
1 INTRODUCTION 

During the past few decades, many efforts have been 
devoted to developing accurate finite element (FE) 
models. However, owing to the complexity of civil 
structures, structural behavior predicted by FE mod-
els (built according to design drawings) is usually 
different from behavior of actual structures in the 
field. The discrepancy is mainly caused by limited 
accuracy of FE modeling. For example, in an actual 
structure, support conditions are far more complicat-
ed than ideal hinges, fixed ends, or rollers common-
ly used in modeling and design. Besides, most struc-
tural components may deteriorate over time. As a 
result, an FE model based on original structural 
drawings does not accurately reflect the deteriorated 
structure.  

To improve the model accuracy, FE model updat-
ing can be performed based on sensor measurement 
from the actual structure. In the past few decades, 
various FE model updating methods have been de-
veloped and practically applied (Friswell & 
Mottershead 1995). Many of these methods utilize 
modal analysis results from field testing. Selected 
structural parameters are updated by solving an op-
timization problem. One major category of model 
updating methods minimizes the difference between 
experimental and simulated modal properties. This 
category will be referred as modal property differ-
ence approach. For example, FE model updating us-
ing changes in mode shapes and frequencies was ap-

plied for damage assessment of a reinforced con-
crete beam (Teughels et al. 2002). Jaishi & Ren 
(2006) proposed an objective function consisting of 
changes in frequencies, modal assurance criterion 
(MAC) related functions, and modal flexibility for 
updating the model of a beam structure. Another 
category of model updating methods will be referred 
as modal dynamic residual approach, which mini-
mizes modal dynamic residuals from the generalized 
eigenvalue equation involving stiffness and mass 
matrices. For example, Farhat and Hemez (1993) 
proposed an iterative least-square (LSQ) algorithm 
to update element stiffness and mass properties by 
minimizing the norm of modal dynamic residuals. 
The method was validated through simulation of a 
2D truss structure and a cantilever beam. Abdalla et 
al. (2000) formulated a linear matrix inequality 
problem that minimizes the change in stiffness ma-
trix (from initial estimate) under constraints on the 
magnitude of modal dynamic residuals.  

Despite intensive research efforts, FE model up-
dating approaches have not been widely applied in 
practice. One of the major obstacles lies in the fact 
that experimental data is inevitably contaminated 
with certain measurement noise. The noisy data pro-
duces uncertainties in model updating results. Re-
searchers have investigated noise effect on some FE 
model updating approaches. For example, Ahmadian 
et al. (1998) investigated the regularized modal dy-
namic residual approach for FE model updating us-
ing noisy measurements. Hua et al. (2012) presented 
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a  numerical study of noise effect on the modal 
property difference approach through Monte Carlo 
simulation.  

This research compares the noise effect on the two 
aforementioned modal-based model updating ap-
proaches, i.e. modal property difference approach 
and modal dynamic residual approach. The rest of 
the paper is organized as follows. The formulations 
of both model updating approaches are presented 
first. Numerical investigation on a 6-DOF spring-
mass structure through Monte Carlo simulation is 
then described, where artificial Gaussian noise is in-
troduced into “measured” natural frequencies and 
mode shapes to be used for model updating. Perfor-
mance of both model updating approaches is com-
pared. Finally, a summary and discussion are pro-
vided. 

2 MODEL UPDATING APPROACHES 

For a linear structural system, the system stiffness 
can be updated as: 
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where K denotes the overall structural stiffness ma-
trix; K0 is the constant initial stiffness matrix esti-
mated prior to model updating; nα  is the total num-

ber of updating parameters;  ( 1,..., )i i nαα =  

represent stiffness parameters to be updated; K0,i is 
the constant sensitivity matrix that corresponds to 
the contribution of the associated updating parame-
ter iα . In this preliminary research, it is assumed 

accurate structural mass matrix is known.  

2.1 Modal property difference approach 

In modal property difference approach, an optimi-
zation problem is usually formulated to minimize 
the difference between experimental and simulated 
natural frequencies and mode shapes (Eq. (2)). 
Compared with experimental properties obtained 
from dynamic testing in the field, the simulated 
properties are generated by an FE model. 
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where m denotes the number of available experi-
mental modes being used for model updating; FE,iω
and exp,iω  represent the i-th simulated (from FE 

model) and experimental natural frequencies, re-
spectively; MACi represents the modal assurance 
criterion evaluating the difference between the i-th 

simulated and experimental mode shapes (i.e. FE,iψ  

and exp,iψ ); wi is the weighting factor of the i-th 

measured mode. Since different modes may have 
different accuracies (in practice, lower-frequency 
modes tend to be more accurate), larger weighting 
factors can be assigned to lower-frequency modes. 
In this research, a nonlinear least-square optimiza-
tion solver, ‘lsqnonlin’ in MATLAB toolbox 
(MathWorks Inc. 2005), is adopted to numerically 
solve the optimization problem (Eq. (2)) in modal 
property difference approach. The optimization 
solver seeks a minimum of the objective function in 
Eq. (2) through Levenberg-Marquardt algorithm 
(Moré 1978), which adopts a search direction inter-
polated between the Gauss-Newton direction and the 
steepest descent direction. At every search step, ac-
cording to Eq. (1) the solver reassembles the stiff-
ness matrix K using updated values for parameters

 ( 1,..., )i i nαα = . The generalized eigenvalue prob-

lem between mass matrix M and updated stiffness K 

is solved for FE,iω  and FE,iψ . The objective func-

tion in Eq. (2) is then evaluated for determining 
search direction, along which a temporary optimal 
solution is obtained for next search step. 

2.2 Modal dynamic residual approach 

For comparison with modal property difference 
approach, a modal dynamic residual approach is 
studied using a regularized least square optimization 
formulation.  
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where i  denotes Euclidean norm (2-norm); exp,iω  

and exp,iψ  denote the i-th modal frequency and 

mode shape from experimental data; M denotes 
structural mass matrix; wi is the weighting factor of 
the i-th measured mode; αααα contains stiffness pa-
rameters to be updated ( ,  1,..., )i i nαα = ; λ  is the 

regularization parameter, which balances the weight-
ings between modal dynamic residuals and parame-
ter changes from initial FE model. The regularized 
objective helps to limit erratic changes in the system 
updating parameters, particularly when measure-
ment noise is present. Although the selection of reg-
ularization parameter λ  deserves in-depth study, 
in this preliminary research, a constant regulariza-
tion parameter is adopted. 

During dynamic testing in the field, usually not all 
DOFs can be measured by sensors. This indicates 
that only incomplete mode shapes can be directly 
obtained from experimental data. Therefore, in addi-



tion to updating parameters iα , part of exp,iψ  is 

unknown in the optimization formulation in Eq. (3). 
In this case, modal expansion techniques can be 
adopted to obtain mode shapes at unmeasured 
DOFs. In detail, this study follows an iterative line-
arization procedure (Farhat & Hemez 1993) for effi-
ciently solving the optimization problem. Each itera-
tion includes two steps: 

Step (i) Modal Expansion 

In Step (i), stiffness parameters in α are treated 
as constant. The parameter values are either based 
on initial estimation, or from model updating results 
in the last iteration. Modal expansion can be per-
formed to obtain the unknown part of each experi-
mental mode shape vector exp,iψ . To lighten nota-

tion, exp,iψ  is simplified as iψ  in the rest of this 

section. The modal expansion is performed as: 
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where subscripts M and U represent the measured 
and unmeasured DOFs, respectively; ,i Mψ  and 

,i Uψ  represent the measured and unmeasured en-

tries of the i-th mode shape vector. The expansion 
matrix ( )1

UU MU
−A A  comes from the generalized 

eigenvalue problem in the structural dynamics: 
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where 

( )2
i iω= −D K M  (6) 

Step (ii) Parameter Updating 

Using the expanded complete mode shapes from 
Step (i), the stiffness parameters α can be obtained 
by solving the optimization problem (Eq. (3)) in 
regularized least square form. Eq. (3) can be rewrit-
ten as follows: 
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The updated model can be used as an initial model 
again in Step (i). Updating process is performed it-
eratively for higher accuracy until updating parame-
ters converge.   

3 NUMERICAL EXAMPLES 

To compare the modal property difference approach 
and the modal dynamic residual approach, a 6-DOF 
spring-mass model is simulated (Figure 1). Table 1 
summarizes the stiffness properties of the model. 
The springs are assigned with different stiffness val-
ues, and the masses blocks are identically set to 6 
kg. For simplicity, the natural frequencies and mode 
shapes are directly obtained from solving general-
ized eigenvalue equation, and used as "experi-
mental" results for model updating.  

Two measurement cases are studied. Case 1 as-
sumes every node is measured, and thus, complete 
experimental mode shapes can be obtained. Because 
modal expansion is not needed, optimization formu-
lation of the modal dynamic residual approach be-
comes a simple least-square problem on stiffness pa-
rameters ki. The problem can be solved without 
iteration. Case 2 assumes partial DOFs are measured, 
where the iterative process is necessary in modal 
dynamic residual approach. For both cases, random 
errors in normal distribution are assigned to every 
natural frequency and mode shape vector. 

exp, exp,i i i= +ψ ψ ζɶ  (10) 

( )exp, exp, 1i i iω ω ξ= ⋅ +ɶ  (11) 

where exp,iψ  denotes the normalized i-th mode 

shape with maximum entry magnitude equal to 1;  

iζ  denotes a zero-mean Gaussian random vector. 

Assuming the first mode is more reliable, the stand-

 
Figure 1. 6-DOF spring-mass structure 

 
Table 1. Structural properties 

Property k1 k2 k3 k4 k5 k6 

Spring stiffness 
(104N/m) 

2.80 3.15 2.45 3.50 4.20 3.85 

 



ard deviation of each entry in noise vector 1ζ  is set 

as 0.01 for the first mode. A standard deviation of 
0.03 is assigned to entries in other noise vectors for 
all higher-frequency modes. In Eq. (11), iξ  denotes 

the relative random error in normal distribution (ze-
ro mean) for the i-th frequency. Similarly, the stand-
ard deviation of error term 1ξ , for the first mode, is 

set as 0.01, while a standard deviation of 0.03 is as-
signed for all higher modes. According to the noise 
level, the weighting parameter wi (Eq. (2) and (3)) is 
assigned to be 2 for the first mode, and 1 for all oth-
er modes. Regularization parameter λ (Eq. (3)) is set 
to 1,000 in all simulations when noise is present.   

For both model updating approaches, Monte Carlo 
simulation is performed for J = 10,000 runs to gen-
erate J sets of “noisy” modal properties. The noisy 
modal properties are used as experimental data input 
to conduct model updating. For consistency in com-
paring the two model updating approaches, at each 
run, the random seed in MATLAB is fixed to gener-
ate the same J sets of noisy modal properties for 
both approaches. The root mean square (RMS) of 
the relative difference between updated and actual 
parameters is calculated to evaluate the updating 
performance for each parameter iα . 
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where act
iα  denotes the actual value of the i-th up-

dating parameter (Table 1), and upd
,i jα  represents the 

updated optimal value of the i-th parameter in the j-
th run.  In this numerical study, the updating pa-
rameters iα  simply refer to stiffness parameters ki. 

 

3.1 Case 1: complete measurement 

In this case, all the DOFs are measured. For refer-
ence, both model updating approaches are first ap-
plied when no noise is added to experimental modal 

properties. The initial guesses of the stiffness pa-
rameters are all assigned to be 3.5×104 N/m, differ-
ent from actual values in Table 1. Because no noise 
is present, the regularization parameter λ is set to ze-
ro and weighting factors wi for all measured modes 
are set identically. For each model updating ap-
proach, the updating is performed assuming differ-
ent numbers of measured modes are available (i.e. 
modes corresponding to the 1, 2, 3, or 6 lowest natu-
ral frequencies). The initial and updated parameter 
values are summarized in Table 2. Shown in the ta-
ble, both model updating approaches can achieve 
accurate solutions when the data is noise-free (the 
average errors are all close to or equal to zero). 

Using noisy modal properties generated from 

Table 2. Model updating results 

Updating 
parameter 

k1 k2 k3 k4 k5 k6 Avg. 
error 
(%) (104N/m) 

Initial Value 3.50 3.50 3.50 3.50 3.50 3.50 17.45 

Modal 
dynamic 
residual 
approach 

1 mode 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
2 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
3 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
6 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 

Modal 
property 
difference 
approach 

1 mode 2.80 3.15 2.45 3.50 4.21 3.83 0.12 
2 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
3 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
6 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 

 

 

 

 

 
Figure 2. Case 1 – Probability density functions of updated 
parameters using the modal dynamic residual approach 
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Monte Carlo simulation, both modal property differ-
ence approach and modal dynamic residual approach 
are performed for model updating. Figure 2 shows 

the probability density functions of updated results 
through modal dynamic residual approach, when 
different numbers of modes are available.  Figure 3 
shows the results for modal property difference ap-
proach.  The actual values of the updating parame-
ters are marked at horizontal axis and represented 
using vertical lines in each plot. When the number of 
available modes increases for both updating ap-
proaches, the variance of some updated parameters 
decreases significantly (e.g. k4 and k5), and the bias 
from actual values also reduces.  Both figures also 
show that in this example, the probability density 
function of each updated parameter is close to a 
normal distribution.  

Table 3 summarizes the RMS error of each updat-
ed parameter, as well as the average RMS error 
among all the parameters. It can be concluded that 
when only the first mode is available, neither of the 
two approaches gives reliable results. As expected, 
updating results improve as the number of measured 
modes increases. When the number of available 
modes increases from 1 to 6, the average error de-
creases monotonically from 13.4% to 2.49% for 
modal dynamic residual approach, and from 10.9% 
to 4.49% for modal property difference approach. In 
this example, the modal dynamic residual approach 
performs better when more modes are available.  

 

3.2 Case 2: incomplete measurement 

In this case, only half of the DOFs are measured 
(Figure 4). Same as Case 1, noise-free scenario is 
studied first as the reference, where the regulariza-
tion parameter λ is set to zero and weighting factors 
wi for all measured modes are set identically. The in-
itial and updated parameter values for both updating 
approaches are summarized in Table 4. The table 
shows that when only one mode is available, neither 
approach can accurately update the parameters.  

 

 

 

 
Figure 3. Case 1 – Probability density functions of updated 

parameters using the modal property difference approach 

Table 3. RMS error of model updating results 

Updating 
parameter 

k 1 

(%) 
k 2 

 (%) 
k 3 

 (%) 
k 4 

 (%) 
k 5 

 (%) 
k 6 

 (%) 

Avg. 
error 
(%) 

Modal 
dynamic 
residual 
approach 

1 mode 4.35 6.70 6.28 10.9 19.6 32.3 13.4 
2 modes 4.40 8.34 8.14 6.55 7.35 9.90 7.45 
3 modes 3.74 6.45 3.31 8.14 4.25 3.00 4.81 
6 modes 3.53 2.15 2.60 2.15 2.72 1.79 2.49 

Modal 
property 
difference 
approach 

1 mode 4.11 6.65 5.88 10.6 16.3 22.1 10.9 
2 modes 3.67 9.17 6.47 6.50 7.47 10.30 7.26 
3 modes 3.84 9.65 4.16 7.50 4.25 3.24 5.44 
6 modes 5.99 3.39 4.70 3.57 4.23 5.04 4.49 

 

 
Figure 4. Measurement configuration  

Table 4. Model updating results 

Updating 
parameter 

k1 k2 k3 k4 k5 k6 Avg. 
error 
(%) (104N/m) 

Initial Value 3.50 3.50 3.50 3.50 3.50 3.50 17.45 

Modal 
dynamic 
residual 
approach 

1 mode 2.82 2.73 2.86 3.50 4.19 4.20 6.69 
2 modes 2.81 3.21 2.43 3.6 4.08 3.78 1.77 
3 modes 2.81 3.22 2.46 3.54 4.15 3.85 0.89 
6 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 

Modal 
property 
difference 
approach 

1 mode 2.82 2.70 2.89 3.78 3.73 3.48 10.29 
2 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
3 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
6 modes 2.80 3.15 2.45 3.50 4.20 3.85 0.00 
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When more modes are available, both model updat-
ing approaches can achieve accurate solutions in the 
noise-free scenario (the average errors are all close 
to or equal to zero). 

Similar to Case 1, both modal property difference 
and modal dynamic residual approaches are per-
formed using noisy modal properties generated from 
Monte Carlo simulation.  Figure 5 shows the prob-
ability density functions of updated results through 
modal dynamic residual approach, when different 
numbers of modes are available.  Figure 6 shows 
the results for modal property difference approach. 
The actual values of the updating parameters are 
represented using vertical lines in each plot. When 

only one mode is available, most of the updated pa-
rameters are much biased from the actual parameter 

 

 

 

 
Figure 5. Case 2 – Probability density functions of updated 
parameters using the modal dynamic residual approach 

 

 

 

 

 
Figure 6. Case 2 – Probability density functions of updated 

parameters using the modal property difference approach 

Table 5. RMS error of model updating results 

Updating 
parameter 

k 1 

(%) 
k 2 

 (%) 
k 3 

 (%) 
k 4 

 (%) 
k 5 

 (%) 
k 6 

 (%) 

Avg. 
error 
(%) 

Modal 
dynamic 
residual 
approach 

1 mode 4.16 13.57 17.54 4.33 10.04 13.20 10.47 
2 modes 3.54 12.28 9.64 5.84 4.68 15.28 8.54 
3 modes 3.93 10.22 3.60 7.60 7.28 3.51 6.02 
6 modes 4.96 2.29 3.99 2.58 3.67 2.51 3.33 

Modal 
property 
difference 
approach 

1 mode 4.20 14.4 18.4 11.4 11.8 9.66 11.6 
2 modes 3.47 14.8 12.6 18.7 21.7 25.4 16.1 
3 modes 4.20 8.47 4.20 8.65 7.01 3.60 6.02 
6 modes 6.06 3.39 4.53 3.85 4.34 5.78 4.66 
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values, similar to the observation from the average 
RMS errors for the noise-free scenario (Table 4).  
For example, when only 1 mode is available for the 
modal property difference approach, the estimation 
for parameter k6 has a small variance but a large bias 
from actual parameter value of 3.85×104 N/m.  
When 2 or more modes are available, updating bias 
significantly reduces, and the variance of some up-
dated parameters decreases considerably. In addi-
tion, similar as Case 1, Figure 5 and Figure 6 show 
that the probability density function of each updated 
parameter is close to a normal distribution in this 
example. 

Table 5 summarizes the RMS error of each updat-
ed parameter, as well as the average RMS error of 
all the parameters using different numbers of availa-
ble modes.  Similar observation as in Case 1 can be 
made. For both approaches, the updating perfor-
mance improves when the number of measured 
modes increases. Based on the average RMS error, 
the modal dynamic residual approach gives slightly 
better performance in general. The average RMS er-
ror of modal dynamic residual approach is lower 
than those of modal property difference approach for 
1,2, or 6 modes. With 3 modes available, the aver-
age RMS errors are the closest between the two ap-
proaches. In addition, the average RMS error of 
modal dynamic residual approach decreases mono-
tonically when the number of available modes in-
creases. 

4 CONCLUSIONS 

This research investigates the robustness of two 
model updating approaches against measurement 
noise. The modal property difference approach min-
imizes the difference between experimental and 
simulated natural frequencies and mode shapes. The 
modal dynamic residual approach minimizes the 
modal dynamic residual of the generalized eigenval-
ue equation in structure dynamics. To improve per-
formance of both approaches, weighting factors are 
applied to contributions from different modes in the 
optimization objective function. In the modal dy-
namic residual approach, a regularized objective 
function is found to improve updating performance. 

 Numerical simulation is performed using a 6-
DOF spring-mass model to compare the perfor-
mance of the two updating approaches. Two meas-
urement cases are studied, one case with complete 
measurements at all DOFs and the other one with 
partial measurements at some DOFs. Monte Carlo 
simulation is conducted to generate experimental 
modal properties contaminated with noise. The 
probability density functions of the updated parame-
ters appear to be close to normal distributions. 

In addition, when only one mode is available, nei-
ther of the two model updating approaches provides 

satisfactory results. When more modes are available, 
the updating performance improves. This example 
also shows that the modal dynamic residual ap-
proach overall gives better results than the modal 
property difference approach. When more high-
frequency modes are available for model updating, 
the average RMS errors using the dynamic residual 
approach are generally smaller than or almost equiv-
alent to the errors using property difference ap-
proach.  Furthermore, the average RMS error from 
the dynamic residual approach has a favorable trend 
of monotonically decreasing when number of avail-
able modes increases. In the future, more extensive 
analytical and numerical studies are needed on the 
convergence, accuracy, and computational efficien-
cy of both model updating approaches under noisy 
measurements. 
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