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ABSTRACT: In order to identify more accurafinite element FE) model parameterfor an as-built stric-
ture, experimental data collected from the acttracsture can be used to update the parameter vdtupgac-
tice, experimental data is inevitably contaminatétth measurement noise, which may lead to inaceur&t
model updating. This research compares the perfowenaf two model updating approaches under noisy
measurements. The first approach minimizes thergiffce between experimental and simulated modg} pro
erties, such as natural frequencies, mode shapdsmadal flexibilities. The second approach miniesiz
modal dynamic residuals from the generalized eigkrev equation involving stiffness and mass matrices
Numerical study of a 6-degree-of-freedom springsrstsucture is performed through Monte Carlo simula
tion that generates noise-contaminated modal ptiegePerformance of the two model updating appgresc

is compared.

1 INTRODUCTION plied for damage assessment of a reinforced con-
crete beam (Teughelst al. 2002). Jaishi & Ren
During the past few decades, many efforts have begR006) proposed an objective function consisting of
devoted to developing accurate finite element (FErhanges in frequencies, modal assurance criterion
models. However, owing to the complexity of civil (MAC) related functions, and modal flexibility for
structures, structural behavior predicted by FE modupdating the model of a beam structure. Another
els (built according to design drawings) is usuallycategory of model updating methods will be referred
different from behavior of actual structures in theas modal dynamic residual approach, which mini-
field. The discrepancy is mainly caused by limitedmizes modal dynamic residuals from the generalized
accuracy of FE modeling. For example, in an actuatigenvalue equation involving stiffness and mass
structure, support conditions are far more complica matrices. For example, Farhat and Hemez (1993)
ed than ideal hinges, fixed ends, or rollers commonproposed an iterative least-square (LSQ) algorithm
ly used in modeling and design. Besides, most stru¢o update element stiffness and mass properties by
tural components may deteriorate over time. As aninimizing the norm of modal dynamic residuals.
result, an FE model based on original structuralhe method was validated through simulation of a
drawings does not accurately reflect the detemakat 2D truss structure and a cantilever beam. Abdtlla
structure. al. (2000) formulated a linear matrix inequality
To improve the model accuracy, FE model updatproblem that minimizes the change in stiffness ma-
ing can be performed based on sensor measuremerik (from initial estimate) under constraints dret
from the actual structurén the past few decades, magnitude of modal dynamic residuals.
various FE model updating methods have been de- Despite intensive research efforts, FE model up-
veloped and practically applied (Friswell & dating approaches have not been widely applied in
Mottershead 1995). Many of these methods utilizgoractice. One of the major obstacles lies in the fa
modal analysis results from field testing. Selectedhat experimental data is inevitably contaminated
structural parameters are updated by solving an opvith certain measurement noise. The noisy data pro-
timization problem. One major category of modelduces uncertainties in model updating results. Re-
updating methods minimizes the difference betweesearchers have investigated noise effect on some FE
experimental and simulated modal properties. Thisnodel updating approaches. For example, Ahmadian
category will be referred as modal property differ-et al. (1998) investigated the regularized modal dy-
ence approach. For example, FE model updating usramic residual approach for FE model updating us-
ing changes in mode shapes and frequencies was apg noisy measurements. Hatal. (2012) presented



a numeripal study of noise effect on the modakjnulated and experimental mode shapes (ife;;
property difference approach through Monte Carlo '

simulation. and vy, ); w is the weighting factor of theth
This research compares the noise effect on the Woeasyred mode. Since different modes may have
aforementhned modal-based m_odel updating aPjifterent accuracies (in practice, lower-frequency
proaches, i.e. modal property difference approac%odes tend to be more accurate), larger weighting
and modal dynamic residual approach. The rest i b ianed to | 't q
the paper is organized as follows. The formulation}aC OfS can be assigned 1o lower-requency modes.
of both model updating approaches are present i this researc‘h, a nqn!lngar least-square optimiza
first. Numerical investigation on a 6-DOF spring-ton solver, “lsgnonlin® in - MATLAB  toolbox
mass structure through Monte Carlo simulation igMathWorks Inc. 2005), is adopted to numerically
then described, where artificial Gaussian noise-is Solve the optimization problem (Eg. (2)) in modal
troduced into “measured” natural frequencies andProperty difference approach. The optimization
mode shapes to be used for model updating. Perfogolver seeks a minimum of the objective function in
mance of both model updating approaches is conEq. (2) through Levenberg-Marquardt algorithm
pared. Finally, a summary and discussion are prgdMoré 1978), which adopts a search direction inter-
vided. polated between the Gauss-Newton direction and the
steepest descent direction. At every search step, a
cording to Eq. (1) the solver reassembles the- stiff
2 MODEL UPDATING APPROACHES ness matrixK using updated values for parameters

For a linear structural system, the system stitnes 7 (1=1...n,). The generalized eigenvalue prob-

can be updated as: lem between mass matiit and updated stiffnedé
0y is solved for ay;; and y;. The objective func-
K=K,+> akK, (1) tion in Eqg. (2) is then evaluated for determining
=1 search direction, along which a temporary optimal

whereK denotes the overall structural stiffness ma-solution is obtained for next search step.
trix; Ko is the constant initial stiffness matrix esti- 2.2 Modal dynamic residual approach

mated prior to model updating), is the total num- . : .
P P I For comparison with modal property difference

ber of updating parameters;a; (i=1,...1,) approach, a modal dynamic residual approach is
represent stiffness parameters to be upda(@’d;is studied using a regularized least square optinaaati
the constant sensitivity matrix that corresponds tdormulation.

the contribution of the associated updating parame- ~ m

ter . In this preliminary research, it is assumed M{[{D!m'ze ZWZH(K _aézxpiM)\l’exp,
accurate structural mass matrix is known. o

Ao @

where

2.1 Modal property difference approach denotes Euclidean norm (2-normjq,,

In modal property difference approach, an optimi-2Nd We,; denote thei-th modal frequency and
zation problem is usually formulated to minimize mode shape from experimental dafd; denotes
the difference between experimental and simulatedtructural mass matrixy; is the weighting factor of
natural frequencies and mode shapes (Eq. (23he i-th measured modey contains stiffness pa-

Compared with experimental properties obtaine - . :
from dynamic testing in the field, the simulatedq’ameters to be update@;, 1 =1,..n, , 4 is the

properties are generated by an FE model. regularization parameter, which balances the weight
, , ings between modal dynamic residuals and parame-
N m [ W W 1-/MAC, ter changes from initial FE model. The regularized
MI'IP.!T"'Ze ZW' W * JMAC, objective helps to limit erratic changes in theteys
B o ' updating parameters, particularly when measure-

ment noise is present. Although the selection gf re
ularization parameterd deserves in-depth study,
in this preliminary research, a constant regulariza
and a,, represent the-th simulated (from FE tion parameter is adopted.

model) and experimental natural frequencies, re- During dynamic testing in the field, usually not al
spectively; MAG represents the modal assurancePOFs can be measured by sensors. This indicates

criterion evaluating the difference between tia  that only incomplete mode shapes can be directly
obtained from experimental data. Therefore, in addi

where m denotes the number of available experi-
mental modes being used for model updating;



tion to updating parameters;, part of v, is

unknown in the optimization formulation in Eq. (3).
In this case, modal expansion techniques can bg-
adopted to obtain mode shapes at unmeasured
DOFs. In detail, this study follows an iterativad:
arization procedure (Farhat & Hemez 1993) for effi-
ciently solving the optimization problem. Each aer
tion includes two steps:

_Wl(Ko_wle)‘l’l

_Wz(Ko_sz)‘Vz )

_Wm(KO_a)iM)Wm

The updated model can be used as an initial model
again in Step (i). Updating process is performed it
eratively for higher accuracy until updating parame
ters converge.

Step (i) Modal Expansion

In Step (i), stiffness parameters m are treated
as constant. The parameter values are either based
on initial estimation, or from model updating résul 3 NUMERICAL EXAMPLES
in the last iteration. Modal expansion can be per-

formed to obtain the unknown part of each experiTo compare the modal property difference approach
mental mode shape vectay,,,;. To lighten nota- and the modal dynamic residual approach, a 6-DOF
spring-mass model is simulated (Figure 1). Table 1
summarizes the stiffness properties of the model.
section. The modal expansion is performed as: The springs are assigned with different stiffnesis v
ues, and the masses blocks are identically set to 6
kg. For simplicity, the natural frequencies and mod

Vi :_(AUU _1AMU)‘|li M (4)
. shapes are directly obtained from solving general-
where subscript$! and U represent the measured j,q eigenvalue equation, and used as “experi-

and unmeasured DOFs, respectively;,, and mental" results for model updating.

v,, represent the measured and unmeasured en-TWO measurement cases are studied. Case 1 as-
,' , . sumes every node is measured, and thus, complete

tries of thei-th mode shape vector. The expansioneyperimental mode shapes can be obtained. Because

matrix (A,,"A,,) comes from the generalized modal expansion is not needed, optimization formu-

eigenvalue problem in the structural dynamics: lation of the modal dynamic residual approach be-
comes a simple least-square problem on stiffness pa

tion, W, is simplified asy; in the rest of this

Awm Aw |~ 1 rameterski. The problem can be solved without
A A =A;=D,'D, (5) iteration. Case 2 assumes partial DOFs are megsured
oM oo where the iterative process is necessary in modal
where dynamic residual approach. For both cases, random
errors in normal distribution are assigned to every
D, = (K —an) (6) natural frequency and mode shape vector.
.. - ~ex j = exp *+G l

Step (ii) Parameter Updating Voo =Won *5 (10)

Using the expanded complete mode shapes frorfkp = @eg {1+&) (11)

Step (i), the stiffness parametees can be obtained o
by solving the optimization problem (Eq. (3)) in Where v, denotes the normalizeitth mode

regularized least square form. Eqg. (3) can be tewrishape with maximum entry magnitude equal to 1;
ten as follows: { denotes a zero-mean Gaussian random vector.
(BTB +A° )u =B'r (7)  Assuming the first mode is more reliable, the stand

where

_ _ k m kz m k3 m k4 m k5 m k6 m

wKow, WKy, ---wK oV 1
B=| ° (.),1\I’2 £ f)’}ll 2 K f""\v 2 (8) Figure 1 6-DOF spring-mass structure

w K,y w.K oW WK Table 1. Structural properties

S e e Property | k| ke | ks | ki | ks | Ko

Spring stiffness
(10°N/m) 2.80| 3.15| 2.45| 3.50| 4.20| 3.85




ard deviation of each entry in noise vectr is set

as 0.01 for the first mode. A standard deviation o
0.03 is assigned to entries in other noise vedtors

all higher-frequency modes. In Eq. (11§, denotes

the relative random error in normal distributioe+(z
ro mean) for the-th frequency. Similarly, the stand-

ard deviation of error term¥¢,, for the first mode, is
set as 0.01, while a standard deviation of 0.0&sis

properties. The initial guesses of the stiffness pa
{ameters are all assigned to be 3.5x40m, differ-

ent from actual values in Table 1. Because no noise
is present, the regularization parametées set to ze-

ro and weighting factors;; for all measured modes
are set identically. For each model updating ap-
proach, the updating is performed assuming differ-
ent numbers of measured modes are available (i.e.
modes corresponding to the 1, 2, 3, or 6 lowest-nat
ral frequencies). The initial and updated parameter

signed for all higher modes. According to the nois&alues are summarized in Table 2. Shown in the ta-
level, the weighting parametes (Eq. (2) and (3)) is ble, both model updating approaches can achieve
assigned to be 2 for the first mode, and 1 footdt

er modes. Regularization parametdiEq. (3)) is set

to 1,000 in all simulations when noise is present.
For both model updating approaches, Monte Carlo

simulation is performed fod = 10,000 runs to gen-

erateJ sets of “noisy” modal properties. The noisy
modal properties are used as experimental data inpw
to conduct model updating. For consistency in com-g
paring the two model updating approaches, at eacly
run, the random seed in MATLAB is fixed to gener-
ate the samd sets of noisy modal properties for
both approaches. The root mean square (RMS) of
the relative difference between updated and actual
parameters is calculated to evaluate the updating

performance for each parametef.

=1

RMS = %i{a

2
upd _ . act
i G J

act
a.

(12)

where a®* denotes the actual value of thth up-

dating parameter (Table 1), and

upd
y!

represents the

updated optimal value of theh parameter in thp

th run.

rameters @, simply refer to stiffness parametdqs

3.1 Case 1: complete measurement

In this case, all the DOFs are measured. For refers,
ence, both model updating approaches are first apz
plied when no noise is added to experimental modag

o

Table 2. Model updating results

Updating

kg

ko | ks

ks | ks

ke Avg.

parameter

(10°N/m)

error
(%)

Initial Value

3.50 3.50 3.50

3.50 3.50

3.5017.45

1 mode

2 modes
3 modes
6 modes

Modal
dynamic
residual
approach

2.803.15 2.45
2.80 3.15 2.45
2.80 3.15 2.45
2.80 3.15 2.45

3.50 4.20
3.50 4.20
3.50 4.20
3.50 4.20

3.85 0.00
3.85 0.00
3.85 0.00
3.85 0.00

1 mode

2 modes
3 modes
6 modes

Modal
property
difference
approach

2.803.15 2.45
2.80 3.15 2.45
2.80 3.15 2.45
2.80 3.15 2.45

3.50 4.21
3.50 4.20
3.50 4.20
3.50 4.20

3.83 0.12
3.85 0.00
3.85 0.00
3.85 0.00

accurate solutions when the data is noise-free (the
average errors are all close to or equal to zero).
Using noisy modal properties generated from
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Figure 2. Case 1 — Probability density functionsijpdated
parameters using the modal dynamic residual approac



Monte Carlo simulation, both modal property differ- the probability density functions of updated result
ence approach and modal dynamic residual approachrough modal dynamic residual approach, when
are performed for model updating. Figure 2 showslifferent numbers of modes are available. Figure 3
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Figure 3. Case 1 — Probability density functionsipdated
parameters using the modal property difference agatr

Table 3. RMS error of model updating results

Updating
parameter

ki
)

k2

(%)

ks

(%)

Ks

(%)

Ks

(%)

Ke

(%)

Avg.
error
(%0)

Modal
dynamic
residual
approach

1 mode
2 mode
3 mode
6 mode

4.35
54.40
53.74
53.53

6.70
8.34
6.45
2.15

6.28
8.14
3.31
2.60

10.9 19.6 32.3 134
6.55 7.35 9.90 7.45
8.14 4.25 3.00 4.81
2.15 2.72 1.79 2.49

Modal
property
difference
approach

1 mode
2 mode
3 mode
6 mode

4.11
53.67
53.84
55.99

6.65
9.17
9.65
3.39

5.88
6.47
4.16
4.70

10.6 16.3 22.1 10.9
6.50 7.47 10.307.26
7.50 4.25 3.24 5.44
3.57 4.23 5.04 4.49

shows the results for modal property difference ap-
proach. The actual values of the updating parame-
ters are marked at horizontal axis and represented
using vertical lines in each plot. When the nuntdfer
available modes increases for both updating ap-
proaches, the variance of some updated parameters
decreases significantly (e.k, andks), and the bias
from actual values also reduces. Both figures also
show that in this example, the probability density
function of each updated parameter is close to a
normal distribution.

Table 3 summarizes the RMS error of each updat-
ed parameter, as well as the average RMS error
among all the parameters. It can be concluded that
when only the first mode is available, neither lué t
two approaches gives reliable results. As expected,
updating results improve as the number of measured
modes increases. When the number of available
modes increases from 1 to 6, the average error de-
creases monotonically from 13.4% to 2.49% for
modal dynamic residual approach, and from 10.9%
to 4.49% for modal property difference approach. In
this example, the modal dynamic residual approach
performs better when more modes are available.

3.2 Case 2: incomplete measurement

In this case, only half of the DOFs are measured
(Figure 4). Same as Case 1, noise-free scenario is
studied first as the reference, where the regw@ariz
tion parametek is set to zero and weighting factors
w; for all measured modes are set identically. The in
itial and updated parameter values for both updatin
approaches are summarized in Table 4. The table
shows that when only one mode is available, neither
approach can accurately update the parameters.

k] m kz m k3 m k4 m kS m kg m

[ ] unmeasured DOF [ ]measured DOF

Figure 4 Measurement configuration

Table 4. Model updating results

Updating ki | ke | ke | ki | ks | ke ér\?gr
parameter (10°N/m) %)
Initial Value 3.50 3.50 3.50 3.50 3.50 3.5017.45

Modal 1 mode | 2.822.73 2.86 3.50 4.19 4.20 6.69
dynamic |2 modes| 2.813.21 2.43 3.6 4.08 3.78 1.77
residual |3 modes| 2.813.22 2.46 3.54 4.15 3.85 0.89
approach |6 modes| 2.803.15 2.45 3.50 4.20 3.85 0.00
Modal 1 mode | 2.822.70 2.89 3.78 3.73 3.48 10.29
property |2 modes| 2.803.15 2.45 3.50 4.20 3.85 0.00
difference|3 modes| 2.803.15 2.45 3.50 4.20 3.85 0.00
approach |6 modes| 2.803.15 2.45 3.50 4.20 3.85 0.00
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Figure 6. Case 2 — Probability density functionsipdiated

Figure 5. Case 2 — Probability density functionsipdiated
parameters using the modal property difference agutr

parameters using the modal dynamic residual approac

When more modes are available, both model updat- Table 5. RMS error of model updating results

ing approaches can achieve accurate solutionsin ﬂbpdating ke | Ko | ks | ke | ks | ke Avg.

noise-free scenario (the average errors are adleclo h error
parameter @) | 00 | 0 | 06 | )| ) | (o)

to or equal to zero).

; : jynamic |2 modes3.54 12.28 9.64 5.84 4.68 15.28 8.54
and modal dynamic residual approaches are pefrjesidual 3 modek3.93 10.22 3.60 7.60 7.28 3.51 6.02

';\‘/I’rmed é‘s“lng r.‘o's?/ modal E.r Ope”';sk?e”er%ted fr%”&pproach 6 modeb4.96 2.29 3.99 2.58 3.67 2.51 3.33
onte Carlo simulation.  Figure 5 shows the prod-y, o™ 1 mode[ 4.20 14.4 18.4 11.4 11.8 9.66 11.6

ability density functions of updated results thrbug operty |2 modes3.47 14.8 12.6 18.7 21.7 25.4 16.1
modal dynamic residual approach, when differentifference(3 modes4.20 8.47 4.20 8.65 7.01 3.60 6.02
numbers of modes are available. Figure 6 showspproach |6 modes6.06 3.39 4.53 3.85 4.34 5.78 4.66
the results for modal property difference approach.

The actual values of the updating parameters arg,\y one mode is available, most of the updated pa-
represented using vertical lines in each plot. Whepymeters are much biased from the actual parameter




values, similar to the observation from the averagsatisfactory results. When more modes are avaijlable
RMS errors for the noise-free scenario (Table 4)the updating performance improves. This example
For example, when only 1 mode is available for thealso shows that the modal dynamic residual ap-
modal property difference approach, the estimatioproach overall gives better results than the modal
for parameteks has a small variance but a large biasporoperty difference approach. When more high-
from actual parameter value of 3@®" N/m. frequency modes are available for model updating,
When 2 or more modes are available, updating biathe average RMS errors using the dynamic residual
significantly reduces, and the variance of some upapproach are generally smaller than or almost equiv
dated parameters decreases considerably. In addilent to the errors using property difference ap-
tion, similar as Case 1, Figure 5 and Figure 6 showroach. Furthermore, the average RMS error from
that the probability density function of each ugdat the dynamic residual approach has a favorable trend
parameter is close to a normal distribution in thisof monotonically decreasing when number of avail-
example. able modes increases. In the future, more extensive
Table 5 summarizes the RMS error of each updatanalytical and numerical studies are needed on the
ed parameter, as well as the average RMS error ebnvergence, accuracy, and computational efficien-
all the parameters using different numbers of avail cy of both model updating approaches under noisy
ble modes. Similar observation as in Case 1 can beeasurements.
made. For both approaches, the updating perfor-
mance improves when the number of measured
modes increases. Based on the average RMS erré&r, ACKNOWLEDGEMENT
the modal dynamic residual approach gives slightly
better performance in general. The average RMS effhis research is partially sponsored by the Nationa
ror of modal dynamic residual approach is lowerScience Foundation, under grant numbers CMMI-
than those of modal property difference approach f01150700 and CMMI-1041607. The authors grateful-
1,2, or 6 modes. With 3 modes available, the averly acknowledge the support. Any opinions, findings,
age RMS errors are the closest between the two apnd conclusions or recommendations expressed in
proaches. In addition, the average RMS error othis material are those of the authors and do act n
modal dynamic residual approach decreases monessarily reflect the views of the National Science
tonically when the number of available modes in-Foundation.
creases.
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