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Abstract—To simulate the behavior of a passive antenna strain 

sensor, current multi-physics coupled simulation (between 
mechanics and electromagnetics) has mainly adopted the 
frequency domain solution. For every frequency point in the 
sweeping range, the frequency domain solver computes the value 
of scattering parameter S11. The S11 curve is used to identify the 
new resonance frequency when the antenna sensor is at certain 
strain level. As a result, the frequency domain solution is 
computationally expensive. In this study, an eigenfrequency 
solution, whose efficiency is shown to be much higher than the 
frequency domain solver, is proposed to directly detect changes of 
antenna resonance frequency under strain. Towards the 
eigenfrequency solution, cavity and partially air-filled cavity FEM 
modeling techniques are proposed to reduce the number of 
degrees of freedom. In addition, by formulating the 
eigenfrequency solution as an eigenvalue perturbation problem, 
Rayleigh quotient iteration (RQI) and the inverse power iteration 
method with Rayleigh quotient (IPIRQ) are proposed to further 
improve the computational efficiency. The proposed methods will 
greatly improve the efficiency of antenna sensor designs.  

 
Index Terms— Multi-physics simulation, eigenvalue 

perturbation, antenna sensor, air-filled cavity, Rayleigh quotient 
iteration, inverse power iteration method. 

I. INTRODUCTION 
mong the great variety of structural health monitoring 
(SHM) technologies, passive wireless sensing has obvious 
advantages. A passive (battery-free) wireless sensor 

requires neither cable nor external power supply for operation 
[1-5]. There are two categories of passive wireless sensing 
technologies for strain and crack sensing. The first one utilizes 
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resonating circuits consisting of inductors, capacitors, and 
resistors [6-8]. In this category, the sensor interrogation is 
achieved by inductive coupling, a near field effect. Therefore, 
the wireless interrogation distance is usually limited to a few 
inches, which is inconvenient for practical applications. The 
second category relies on far field effect to characterize 
changes in antenna properties, including resonance frequency, 
power spectrum, and return loss [9-11]. When an antenna 
experiences strain deformation, the antenna shape changes, 
causing shift in electromagnetic resonance frequency of the 
antenna. For example, authors have developed passive RFID 
(radio frequency identification) antenna sensors for wireless 
strain measurement [12, 13]. Through signal modulation by an 
economic RFID chip (costing about $0.10), the RFID antenna 
sensors achieve much longer interrogation distances than 
inductive coupling sensors, and demonstrate promising 
performance for wireless strain/crack sensing. In another 
example, a frequency doubling technique is introduced as an 
alternative approach for signal modulation of a passive antenna 
sensor [14, 15].  

In order to accurately describe the electromagnetic behaviors 
of these antenna sensors under strain, it is essential to consider 
two physical domains: electromagnetics (antenna resonance 
frequency) and mechanics (strain) [16]. In the multi-physics 
simulation, the mechanical simulation is conducted for a certain 
strain level first. The deformed shape of the antenna structure is 
directly used for electromagnetic simulation through moving 
meshes, which transfer the actual deformed shape to the 
electromagnetic simulation. The resonance frequency of an 
antenna is determined by sweeping through a large frequency 
range and identifying the minimum point from the scattering 
parameter (S11) plot.  During the final stage of a sensor design, 
the frequency-domain simulation is necessary for verifying 
antenna radiation performance. Although frequency-domain 
simulation is a common practice, it is time consuming and 
inefficient, particularly when the performance of an antenna 
sensor needs to be characterized at many strain levels. In this 
study, an eigenfrequency solution is proposed to directly detect 
resonance frequency change of an antenna sensor under strain, 
without the time consuming computation of S11 plot at many 
different strain levels. The eigenfrequency solution 
significantly reduces simulation time while maintaining the 
simulation accuracy for strain sensing. In addition, two novel 
approaches are proposed to further improve simulation speed in 
this paper, one through the simulation model and the other 
through eigenfrequency solver.  

In FE modeling of electromagnetics, a full-wave model is 
generally used because it can describe not only resonance 
frequencies but also other antenna parameters. These include 
antenna gain, as well as electric and magnetic radiations in near 
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and far fields. However, the full-wave model is 
computationally expensive because oftentimes hundreds of 
thousands of degrees of freedom (DOFs) are needed for 
accuracy [12, 15, 16]. In this paper, the cavity and partially 
air-filled cavity models are proposed to reduce the number of 
DOFs from a full-wave model  [17, 18]. The cavity model 
reduces computational loads by simply removing the air 
volume, and thus, all air elements. For the partially air-filled 
cavity model, although an air domain still exists, the size of the 
air box is much smaller than the air volume of the full-wave 
model. In the boundary conditions to truncate the simulation 
domain, while the full-wave model commonly uses perfectly 
matched layers (PMLs) to require several mesh layers, both 
new models use perfect electric conductor (PEC) and perfect 
magnetic conductor (PMC) to be defined by only one layer. As 
a result, the proposed eigenfrequency solution with cavity or 
partially air-filled cavity model requires order-of-magnitude 
less computing time compared with the common approach of 
simulating S11 plots of a full-wave model at multiple strain 
levels. This paper will also examine the accuracy of the 
proposed models and eigenfrequency solution.  

In order to further improve computing speed in antenna 
sensor design, this paper also investigates a number of 
eigenvalue perturbation algorithms for finding eigenfrequency 
at a new strain level. As the antenna sensor deforms under 
strain, the finite element model computes deformed geometries 
to generate the new inductance and capacitance matrices of the 
antenna. The eigenfrequency algorithms utilize results from a 
previous step as a starting point, viewing the eigenvalue 
problem at the next strain level as a small perturbation to the 
previous strain level. Based on the commonly used Rayleigh 
quotient iteration (RQI) method, we propose an inverse power 
iteration method with Rayleigh quotient (IPIRQ) [19-21]. 
Rapid solution of the eigenvalue problem provides the shifted 
resonance frequency of the antenna sensor at the new strain 
level. These proposed eigenvalue perturbation algorithms allow 
the resonance frequencies of the antenna sensor to be rapidly 
identified at many strain levels. As a result, the strain sensitivity 
of the antenna sensor can be immediately calculated as the 
slope of the (approximately) linear relationship between 
resonance frequency and strain level. 

The rest of this paper is organized as follows. Section II 
describes finite element formulation of the eigenfrequency 
(eigenvalue) problem for antenna sensors. Section III compares 
the computing load and accuracy of three FEM electromagnetic 
models, including full-wave, cavity, and partially air-filled 
cavity models. Section IV presents RQI and IPIRQ techniques. 
Section V shows a validation example of the proposed methods 
with a 2.9GHz patch antenna. Finally, the paper is summarized 
with a conclusion and future work.  

II. FINITE ELEMENT FORMULATION OF THE EIGENVALUE 
PROBLEM  

This section describes the finite element formulation and its 
eigenfrequency solution of antenna sensors. Section A 
introduces the basic finite element formulation in 
electromagnetic problems. Section B presents the 
eigenfrequency solution from state-space formulation. Section 

C compares the simulation efficiency of the eigenfrequency 
solution and the frequency domain solution. 

A. Finite element formulation 
For simulating an antenna strain/crack sensor, Fig. 1 

illustrates the domains including the sensor, an air sphere, and 
PML. A patch antenna sensor usually includes a top metallic 
surface, a dielectric substrate layer in the middle, and a bottom 
ground plane for attaching to the structure being monitored.  
The substrate material affects antenna radiation performance 
and antenna size. The metallic surface is usually modeled as 
PEC materials. The boundary of the metallic surface is denoted 
as SPEC, whose direction is 𝑛𝑛� . The volume of the dielectric 
substrate is denoted as Vd and the substrate relative permittivity 
and permeability are 𝜇𝜇r  and 𝛽𝛽𝑟𝑟 , respectively. The entire 
antenna sensor is placed inside an air sphere, whose 
permittivity and permeability are 𝜇𝜇0 and 𝛽𝛽0, respectively. Since 
a resonant antenna model is an open structure that has no 
definite physical boundaries, it is necessary to set termination 
boundaries so that the simulation domain is finite. The 
combination of PML and PEC is adopted in the 3D 
electromagnetic simulation. The Maxwell’s equations in an 
inhomogeneous material have the general vector form [22, 23]: 

∇ × 𝐄𝐄 = −𝑗𝑗𝜔𝜔𝜔𝜔𝐇𝐇 

∇ × 𝐇𝐇 = 𝑗𝑗𝜔𝜔𝛽𝛽𝐄𝐄 + 𝐉𝐉 
∇ · (𝛽𝛽𝐄𝐄) = 𝜌𝜌 

∇ · (𝜇𝜇𝐇𝐇) = 0 

(1) 

where 𝐄𝐄 = 𝐸𝐸𝑥𝑥x� + 𝐸𝐸𝑦𝑦y� + 𝐸𝐸𝑧𝑧z� is the electric field;  𝐇𝐇 = 𝐻𝐻𝑥𝑥x� +
𝐻𝐻𝑦𝑦y� + 𝐻𝐻𝑧𝑧𝑧̂𝑧 is the magnetic field; 𝐉𝐉 is the current vector; 𝜌𝜌 is 
charge density; μ and β are the permeability and permittivity of 
the material, respectively; 𝜔𝜔 is the angular frequency; ∇ is the 
del operator in Cartesian coordinates: 

∇= x�
∂
∂x

+ y�
∂
∂y

+ z�
∂
∂z

 (2) 

In finite element method, the entire solution domain is 
discretized into a finite number of elements. Each element 
occupies a separate volume 𝑉𝑉𝑒𝑒  (e = 1, 2, …, NT), where NT is 
the total number of elements. The electric field can then be 
denoted in a vector form in terms of the polynomial basis 
functions 𝐍𝐍𝑖𝑖𝑒𝑒 over a general m-edge finite element [22]: 

                
Fig. 1. Inhomogeneous structure enclosed by termination boundaries 
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𝐄𝐄𝑒𝑒 = �𝐸𝐸𝑖𝑖𝑒𝑒𝐍𝐍𝑖𝑖𝑒𝑒
𝑚𝑚

𝑖𝑖=1

 (3) 

where  𝐍𝐍𝑖𝑖𝑒𝑒 is the i-th edge based vector basis function of 
element e; m is the total edge number of one element; 𝐸𝐸𝑖𝑖𝑒𝑒 is the 
tangential electric field along the i-th edge of element e.  
According to variational principle, the following discretized   
equation can be obtained [24]:   

(𝑗𝑗𝜔𝜔)2�[𝑇𝑇𝑒𝑒]{𝐸𝐸𝑒𝑒} + (𝑗𝑗𝜔𝜔)�[𝑅𝑅𝑒𝑒]{𝐸𝐸𝑒𝑒} 
NT

𝑒𝑒=1

NT

𝑒𝑒=1

 

+�[𝐶𝐶𝑒𝑒]{𝐸𝐸𝑒𝑒} = �{𝑝𝑝𝑒𝑒}
NT

𝑒𝑒=1

NT

𝑒𝑒=1

 

(4) 

where μ is the permeability; 𝜔𝜔  is angular frequency; [𝐶𝐶𝑒𝑒] , 
[𝑅𝑅𝑒𝑒] and [𝑇𝑇𝑒𝑒]  are elementary inductance, damping, and 
capacitance matrix, respectively; 𝑝𝑝𝑒𝑒 is the source term due to 
incident voltage or current excitation at the port. The entries of 
the matrix, [𝐶𝐶𝑒𝑒], [𝑅𝑅𝑒𝑒]and [𝑇𝑇𝑒𝑒] are given by 

𝐶𝐶𝑖𝑖𝑖𝑖𝑒𝑒 = �
1
µ

(∇ × 𝐍𝐍𝑖𝑖𝑒𝑒) · �∇ × 𝐍𝐍𝑗𝑗𝑒𝑒�
𝑉𝑉𝑒𝑒

𝑑𝑑𝑑𝑑 

𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒 = µ �� 𝐍𝐍𝑖𝑖𝑒𝑒 · �𝑛𝑛� × 𝐍𝐍𝑗𝑗𝑒𝑒�𝑑𝑑𝑑𝑑
𝑆𝑆𝑒𝑒

� 

𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒 = � 𝛽𝛽𝐍𝐍𝑖𝑖𝑒𝑒 · 𝐍𝐍𝑗𝑗𝑒𝑒𝑑𝑑𝑑𝑑
𝑉𝑉𝑒𝑒

 

(5) 

where 𝑉𝑉𝑒𝑒  is the volume of element e; 𝑆𝑆𝑒𝑒  is the boundary of 
element e. 

B. Eigenfrequency solution 
If no excitation is considered, the source term {𝑝𝑝𝑒𝑒} in Eq. (4) 

vanishes. The equation can be rewritten as [22] with 
simplification:   

𝜆𝜆2[T]{E} + 𝜆𝜆[R]{E} + [C]{E} = {0} (6) 

where 𝜆𝜆 is eigenvalue; [C] is named as inductance matrix; [T] is 
named as capacitance matrix, while [R] is the damping matrix. 
The final formulation in Eq. (6) ends up as a quadratic 
eigenvalue problem [25, 27]. Using N to denote the total 
number of degrees of freedom in Eq. (6), [C] and [R] are N × N 
complex symmetric matrices, while [T]  is an N × N real 
symmetric matrix. Since the entry 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒  in Eq. (5) includes 
material permittivity β, which is a small number on the order of 
10-12, the magnitudes of 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒  as well as entries in global matrix 
[T] are small. The entry 𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒  in Eq. (5) is also small due to small 
magnitude of  µ0. With small-magnitude entries in [R] and [T], 
the matrices are usually ill-conditioned. To improve the 
condition number of the two matrices, a scaling factor is 
empirically determined as follows.  

 𝑠𝑠 = 1,000 ×
max
𝑖𝑖,𝑗𝑗

�C𝑖𝑖,𝑗𝑗�

max
𝑖𝑖,𝑗𝑗

�T𝑖𝑖,𝑗𝑗�
 (7) 

To this end, Eq. (6) is reformulated as: 

𝜆̃𝜆2[Ts]{E} + 𝜆̃𝜆[Rs]{E} + [C]{E} = {0} (8) 

where 

[Rs] = √𝑠𝑠[R];   [Ts] = 𝑠𝑠[T];   𝜆̃𝜆 = 𝜆𝜆/√𝑠𝑠;    (9) 

State-space formulation equivalently converts Eq. (6) into a 
generalized eigenvalue problem: 

[A]{Φ} = 𝜆̃𝜆[B]{Φ} (10) 

where 
 

  [A] = �−
[C] [0]

[0] [Ts]� , [B] = �
[Rs] [Ts]
[Ts] [0] � , {Φ} = �

{E}
𝜆̃𝜆{E}� (11) 

Here [0] is an N×N zero matrix.  
The eigenvalue 𝜆𝜆 is closely related with resonance frequency 

of the antenna sensor fR according to the following equation: 

𝜆̃𝜆 =
j𝜔𝜔− 𝑎𝑎
√𝑠𝑠

=
j2𝜋𝜋𝑓𝑓R − 𝑎𝑎

√𝑠𝑠
 (12) 

The resonance frequency fR is a key parameter determining 
the strain effects of the antenna sensor. Real value 𝑎𝑎 is used to 
determine the quality factor for antenna design. Associated 
with every eigenvalue 𝜆𝜆,  eigenvector {Φ}  represents the 
electric field distribution of each eigenmode. 

C. Comparison of eigenfrequency and frequency domain 
solutions 

In order to compare performances of two solutions for strain 
sensing simulation, i.e. the eigenfrequency solution and the 
frequency domain solution, a 2.9GHz patch antenna is modeled 
as an example using the commercial multi-physics software 
package COMSOL (Fig. 2). The substrate material of the 
example model is Rogers RT/duriod®5880 with dielectric 
constant ( 𝜀𝜀𝑟𝑟 = 2.2 ) and low loss tangent of 0.0009. The 
thickness of the substrate is 0.7874mm and the planar 
dimension of the 2.9GHz patch antenna is 44.5mm × 33.3mm. 
The antenna is mounted on an aluminum specimen. Strain is 
applied to the two ends of the aluminum specimen. The 3D 
full-wave electromagnetic simulation setup of the 2.9GHz 

 
Fig. 2. Illustration of the 2.9GHz patch antenna on the aluminum 
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model for COMSOL is presented in Fig. 3(a). PEC boundaries 
are assigned to the outside of the air sphere, the patch, and the 
ground plane. The PML boundary is also combined with the 
PEC at the air sphere. The total number of degrees of freedom 
(DOFs) is 259,975. Simulations are conducted on a desktop 
with Intel® Xeon® processor E5-1620V3 (four cores, 3.5GHz) 
and 16 GB RAM memory. 

 At first, the frequency domain solver simulates a scattering 
parameter S11 plot (Fig. 3(b)). This is an indicator of the 
antenna radiation performance in the sweeping frequency 
ranges at different strain levels from zero to 2,000με, with 
500με strain increase per step. The computation of S11  curve at 
each strain level is performed for 51 frequency points, 
consuming 9,722 seconds (2hours, 42 minutes, 2 seconds) in 
total. The minimum valley point of a S11 plot presents the 
resonance frequency of the antenna at that strain level. As a 
post processing procedure, linear regression is performed 
between resonance frequency and strain to construct the strain 
sensitivity plot (Fig. 3(c)). The resonance frequency is 
2,900.75MHz and strain sensitivity is ‒2,578Hz/με, which 
means 1με strain experienced by the patch antenna introduces a 
frequency change of ‒2,578Hz. The coefficient of 
determination is close to 1.0000, which shows a highly linear 
relationship. 

In the eigenfrequency solution, COMSOL LiveLink™ 
interface for MATLAB is adopted [28]. The mechanics 
simulation for certain strain level is conducted first in the 
mechanical domain. Through the LiveLink™, the [C], [R], and 
[T] from COMSOL are transferred into the MATLAB, which 
formulates [A]  and [B]  matrix (Eq. (10) and (11)). Finally 
MATLAB eigs command is used to compute the generalized 
eigenvalue solution of these sparse [A] and [B] matrix [28]. 
The eigs command is set to directly search the 

eigenfrequency close to 2900MHz. The eigenfrequency is 
again extracted for each strain level. After performing linear 
regression between resonance frequency and strain data, the 
strain sensitivity is identified as ‒2,618Hz/με and resonance 
frequency at zero strain level is 2900.23MHz (Fig. 3 (d)).  
These are very close to the frequency-domain results. The 
coefficient of determination is also rounded off to 1.0000. The 
computing time at each strain level is 520 seconds (8 min 40 
seconds) for the eigenfrequency solver, which is much faster 
than the frequency-domain solver. Therefore, it is 
demonstrated that the strain sensitivity simulation, the 
efficiency of the eigenfrequency solver is nearly 20 times 
higher than the frequency-domain solver. 

 

III. FEM MODELING TECHNIQUES TO IMPROVE 
SIMULATION EFFICIENCY  

This section describes two electromagnetic FEM modeling 
techniques to reduce computational efforts with much less 
number of DOFs. Section A presents a cavity model, which 
removes the air volume from the full-wave model to reduce 
DOFs. However, it was observed that the cavity model cannot 
consider fringing effect due to the lack air volume. In order to 
address this problem, Section B describes a partially air-filled 
cavity model which has a shallow air box on the patch antenna 
to compensate the fringing effect, without significantly 

increasing the number of DOFs.  

A. Cavity model 
Although the eigenfrequency solution in the full-wave model 

provides similar results as the frequency-domain results, many 
spurious modes exist along with the resonance mode. 
Therefore, it can be difficult to identify the correct resonance 
mode and the corresponding frequency. By removing the air 
sphere and modifying boundary conditions correspondingly, a 
cavity model entails much less DOFs than the full-wave model. 
The cavity model of the 2.9GHz patch antenna is shown in Fig. 
4(a). PEC boundaries are assigned as the microstrip patch and a 
ground plane. PMC boundaries are assigned to four sides and 
the top of the substrate. These boundary conditions exclude the 
aluminum plate in this electromagnetic domain simulation 
although the plate still exists in the mechanical simulation. 
Therefore, while electromagnetic domain of the full-wave 
model contains the aluminum plate and the air, the cavity model 
contains only the patch antenna and achieves faster computing. 
The total number of DOFs is 24,459, which is about 10 times 

  
(a) Full-wave model (b) S11  parameter  

(frequency domain solver) 

  
(c) Resonance frequency versus strain 

(frequency domain solver) 
(d) Resonance frequency versus 
strain (eigenfrequency solver) 

Fig. 3. Comparison between frequency domain and eigenfrequency 
solvers in the full-wave model 
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smaller than that of the full-wave model.  
Benefiting from much less DOFs, total computing time of 

the eigenfrequency solver at each strain level is only 8 seconds. 
However, because PMC boundary conditions are assigned on 
the substrate, a fringing field is not generated around the side of 
the microstrip patch in the cavity model. Therefore, the 
simulated resonance frequency at zero strain is 2980.06MHz 
(Fig. 4(b)), which is 2.7% different from resonance frequency 
of the full-wave model in Section II. Fig. 4(b) shows the 
simulated strain sensitivity to be ‒2,935Hz/με, which is also 
12.1% higher than the full-wave model. In conclusion, although 
the cavity model requires less computation, this approach has 
notable inaccuracy because of neglecting the fringing effect. 

B. Partially air- filled cavity model 
By adding a small air box to the cavity model, the fringing 

field is restored in the electromagnetics simulation. Fig. 5 
explains the electric field comparison between a cavity and a 
partially air-filled cavity model. The cavity model assigns PMC 
boundaries on the surface of the substrate, which blocks the 
generation of the electric field in the horizontal direction. In 
other words, the direction of the electrical field is only vertical 

(Fig. 5(a)). The partially air-filled cavity model assigns PMC 
boundary conditions on the added air box, which provides 
enough space for generating the horizontal electrical field (Fig. 
5(b)).  Therefore, the partially air-filled cavity model is able to 
describe the fringing field. 

The partially air-filled cavity model of the 2.9GHz patch 
antenna is simulated in COMSOL (Fig. 6). PEC boundary 
conditions are the same as in the cavity model in Section A, and 
PMCs are assigned on the surface of the air box (Fig. 6(a)). The 
number of DOFs is 56,379. Although this number is larger than 
that of the cavity model, it is still five times smaller than the 
full-wave model. As shown in Fig. 6(b), simulated resonance 
frequency is 2905.91 MHz, which is much closer to the 
resonance frequency from the full wave model. Strain 
sensitivity is calculated as ‒2,677Hz/με and the coefficient of 
determination is close to 1.0000. The computing time at each 
strain level of the eigenfrequency solver is 25 seconds. The 
comparison among three FEM models in Section II-III is 
briefly summarized in Table 1. The partially air-filled cavity 
model is shown to achieve the best trade-off between 
computing time and accuracy.  

IV. EIGENFREQUENCY SOLVERS FOR STRAIN SENSING 
SIMULATION 

In the strain sensing simulation, because changes of system 
matrices [A] and [B] between two adjacent strain levels are 
expected to be small, the differences in eigenfrequencies and 
eigenvectors are likewise small. In order to reach fast 
convergence, the eigenvalues and eigenvectors in the previous 
step can be utilized as starting vectors to search for solution at 
the next strain step. Section A explains the Rayleigh quotient 
iteration (RQI) method, a commonly used eigenvalue 
algorithm. In Section B, we proposed an inverse power 
iteration with Rayleigh quotient (IPIRQ) method which can be 
implemented to further improve the solution speed. Section 0 
describes the overall COMSOL-MATLAB framework for 
strain sensing simulation using these eigenvalue perturbation 
algorithms. 

A. Rayleigh Quotient Iteration (RQI) method 
The Rayleigh quotient iteration (RQI) method is 

implemented to improve computational efficiency of the 
eigenfrequency solution. To find the interested eigenfrequency 
of an antenna resonance mode, the shifted version of RQI is 
implemented (Fig. 7). 

As described in Eq. (11), [A] and [B] are complex-valued 
symmetric and sparse matrices. Since matrix with a smaller 
bandwidth generally improves speed of linear solvers, the 
reverse Cuthill-McKee algorithm [29] is applied to [A] and 
[B] first in step ①, producing a preordering permutation 
matrix [P] and preordered matrices � A�𝑗𝑗+1� and � B�𝑗𝑗+1�  with 
smaller bandwidth. In step ②, since the generalized 
eigenvalue is not affected by the preordering process, 𝜆𝜆𝑗𝑗  at 
strain level εj is directly saved as an intermediate eigenvalue 𝜇𝜇 
for starting the search. Meanwhile, the starting eigenvector 
{𝑞𝑞}  is determined by reordering eigenvector �Φ𝑗𝑗�   with 
permutation matrix [P]. In step ③, a temporary scaler d is 
computed once for later repetitive use in the do-while loop. 
In step ④, the LU factorization is performed with � A�𝑗𝑗+1� −

  
(a) Cavity model (b) Partially air-filled cavity model 

Fig. 5. Electric field comparison 

Table 1.  Comparison of three FEM models 

 Full-wave 
model Cavity model 

Partially air- 
filled cavity 

model 
Resonance 
frequency 

2900.23MHz 2980.06MHz 
(*error: 2.75%) 

2905.91MHz 
(*error: 0.20%) 

Strain 
sensitivity 

‒2,618Hz/με ‒2,935Hz/με 
(*error:12.12% ) 

‒2,677Hz/με 
(*error: 2.25%) 

No. of DOFs 259,975 24,459 56,379 
Eigenfrequency 
solution time at 

each strain 
level 

520 seconds 8  seconds 25  seconds 

* Errors are relative to the full wave model 

 

 
 

 
(a) Partially air-filled cavity model (b)Resonance frequency versus strain 

Fig. 6. Partially air-filled cavity model simulation 
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𝜇𝜇�B�𝑗𝑗+1�  to obtain a lower triangular matrix [L] and upper 
triangular matrix [U]. This LU factorization is the most 
computationally expensive step in RQI process. In step ⑤, the 
intermediate eigenvector {𝑞𝑞}  is updated and normalized. In 
step ⑥ , the intermediate eigenvalue  𝜇𝜇  is updated by the 
Rayleigh quotient. In step ⑦, the error of the current step is 
calculated. If the error is lower than tolerance, the loop 
terminates; the eigenvalue 𝜆𝜆𝑗𝑗+1  and eigenvector �Φ𝑗𝑗+1�  at 
strain level εj+1 are updated in step ⑧. To restore the original 
eigenvector order, the intermediate eigenvector {𝑞𝑞}  is 
reordered by the transpose of the permutation matrix [P]T. If 
the error is higher than tolerance, the algorithm returns to step 
④ and iterates the process. 

B. Inverse Power Iteration with Rayleigh Quotient 
(IPIRQ) method 

Although the RQI method is commonly used, an Inverse 
power iteration with Rayleigh quotient (IPIRQ) method is 
proposed to herein further improve computing speed. In the 
RQI method, the most computationally expensive step is the 
LU factorization. When the RQI method iterates in the 
do-while loop, the LU factorization is computed in every 
iteration, increasing computational loads. In comparison, the 
proposed IPIRQ method performs the factorization only one 
time and effectively reuses factorization results ([L] and [U] 
matrices) for each iteration. Therefore, the IPIRQ method can 
be much faster than the RQI method in most cases [21].  

The process of the IPIRQ from step ① to ③ is the same as 
the RQI method in Fig. 7. But, in step ④, the LU factorization is 
moved out of the do while loop, and placed before do. The 
process from step ⑤ to ⑧  also follows the RQI method. 
Compared with the RQI method, the [L] and [U] matrices used 
at step ⑤ of the IPIRQ method are only accurate at first 
iteration. At the second or any later iteration, the RQI performs 

factorization to � A�𝑗𝑗+1� − 𝜇𝜇�B�𝑗𝑗+1� with the updated  𝜇𝜇 value, to 
get updated [L] and [U]. However, IPIRQ reuses the [L] and 
[U] from the first iteration as approximation to these two 
matrices at the current iteration. Therefore, despite time saving, 
the accuracy of IPIRQ is yet to be examined. 

C. COMSOL-MATLAB framework 
The antenna sensor models can be easily built in COMSOL 

through user friendly graphical interface, but it is not 
convenient to implement customized eigenvalue solvers into 
COMSOL graphical interface. Instead, COMSOL LiveLink for 
MATLAB allows the customized solvers to be applied to 
COMSOL-generalized matrices in electromagnetic domain.  

Fig. 8 shows the COMSOL-MATLAB communication 
process using eigenvalue techniques for updating sensor 
resonance frequencies at multiple strain levels. The simulation 
model is first built in COMSOL with proper mechanical and 
electromagnetic boundary conditions. Matrices [C0], [R0], and 
[T0] in Eq. (6) are then generated by COMSOL and transferred 
to MATLAB. These matrices are used to construct [ A0] and 
[ B0] according to Eq. (11). The eigenvalue 𝜆𝜆0 and eigenvector 
{Φ0} are calculated through eigenvalue solver at zero strain 
level ε0.  

Upon the simulation at zero strain level and later at a j-th 
strain level, the antenna structure is subjected to corresponding 
loading in COMSOL. The deformed antenna shape is used to 
generate inductance and capacitance matrices at strain level εj. 
The corresponding system matrices � A𝑗𝑗� and � B𝑗𝑗�  are 
constructed in MATLAB. An eigenvalue perturbation 
algorithm can then be applied to calculate the eigenvalue 𝜆𝜆𝑗𝑗R and 
eigenvector �Φ𝑗𝑗� at strain εj, based on 𝜆𝜆𝑗𝑗−1R and �Φ𝑗𝑗−1�  from 
the previous strain step. The updating process continues for all 
required strain levels. 

V. VALIDATION EXAMPLE 
To validate the accuracy and efficiency of the proposed 

partially air-filled cavity model and the IPIRQ eigenvalue 
perturbation algorithm, the same 2.9GHz patch antenna is 
investigated. Four strain levels are simulated, ranging 
500~2,000 με with a strain step of 500 με. The eigenfrequency 
at each strain level is first calculated by eigs function in 
MATLAB. To check the effect of different starting vectors to 
the computation error and time, a randomly generated vector 

                               {𝑞𝑞} =
{𝑞𝑞}
‖{𝑞𝑞}‖ ; 

   ⑥                        𝜇𝜇 =
{𝑞𝑞}H� A�𝑗𝑗+1�{𝑞𝑞}
{𝑞𝑞}H�B�𝑗𝑗+1�{𝑞𝑞}

 ; 

   ⑧               𝜆𝜆𝑗𝑗+1  =  𝜇𝜇 ;         �Φ𝑗𝑗+1� = [P]T{𝑞𝑞} ;       

    
   ①    Preordering [P]�A𝑗𝑗+1�[P]T = � A�𝑗𝑗+1�;     
                                                    [P]�B𝑗𝑗+1�[P]T = � B�𝑗𝑗+1�; 
 
   ②         𝜇𝜇 = 𝜆𝜆𝑗𝑗 ;     {𝑞𝑞} = [P]�Φ𝑗𝑗�;    
   
   ③       𝑑𝑑 = �� A�𝑗𝑗+1�� + �𝜇𝜇�B�𝑗𝑗+1��; 
 
           do {    
 
   ④                   LU factorization �� A�𝑗𝑗+1� − 𝜇𝜇�B�𝑗𝑗+1�� = [L][U]; 
 
 ⑤         {𝑞𝑞} = [U−1][L−1]�B�𝑗𝑗+1�{𝑞𝑞}; 
  

   

 

⑦            error =   
�� A�𝑗𝑗+1�{𝑞𝑞} − 𝜇𝜇�B�𝑗𝑗+1�{𝑞𝑞}�

𝑑𝑑
 ; 

    
           } while (error > tolerance) ; 
 

      
Fig. 7. RQI routine for shifted symmetric [A] and [B] formulations 

Fig. 8. COMSOL-MATLAB communication 
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end
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and the eigenvector from previous strain level are adopted as 
the starting vector, respectively for comparison. The RQI and 
the IPIRQ methods are applied for comparison with the two 
MATLAB eigs solutions with different starting vectors. The 
error tolerance for the four methods (two eigs, RQI, and IPIRQ) 
is set to 10-16.   

The computed resonance frequency results from the four 
solvers are compared and summarized in Fig. 9. The legend 
“eigs-rand” denotes the results from eigs function with 
randomly generated vector as starting vector; the legend 
“eigs-prev” indicates results from eigs function with previous 
eigenvector as starting vector; the legend “RQI” and “IPIRQ” 
denote the results from the RQI and the IPIRQ methods, 
respectively. In this example, the resonance frequencies from 
four solution methods show good match (Fig. 9(a)) at all strain 
steps. Fig. 9(b) shows the closed-up view at 1,000 με. 

To further compare the solution accuracy, following error 
index is defined: 

error =
�A𝑗𝑗+1�Φ𝑗𝑗+1� − 𝜆𝜆𝑗𝑗+1B𝑗𝑗+1�Φ𝑗𝑗+1��

�A𝑗𝑗+1� + �𝜆𝜆𝑗𝑗+1B𝑗𝑗+1�
 (13) 

where 𝜆𝜆𝑗𝑗+1  and �Φ𝑗𝑗+1�   are the computed eigenvalue and 
eigenvector at (j+1)-th strain step. 
As shown in Fig. 9(c), the computational errors of all methods 
are lower than 1×10-16. Computation error for the RQI and the 
IPIRQ methods is between 3.8×10-18 to 4.2×10-18, both smaller 
than the eigs solutions. Comparison of computation time is 
plotted in Fig. 9(d). The computation time of IPIRQ is the 
fastest, which is about 1.3 times faster than the eigs solutions 
and 1.86 times faster than the RQI method. To explain the 
difference between RQI and IPIRQ, Table 2 provides 
computation time for every step of these two methods at 
1,000με level. The step numbers follow Fig. 7. As shown in the 
table, a critical time-consuming step of both algorithms is LU 
factorization (Step ④ in both methods). Therefore, although 
RQI has only two iterations and IPIRQ needs three iterations to 
converge, IPIRQ is more efficient than RQI by reusing LU 
factorization while achieving similar accuracy. 

SUMMARY AND DISCUSSION 
This study first presents electromagnetic finite element 

formulation of antenna sensors using both frequency domain 
solver and eigenfrequency solver. The 2.9 GHz patch antenna 
simulation is performed using both solvers, and the calculated 
resonance frequency results are compared. The eigenfrequency 
solver consumes nearly 5% of the time required by the 
frequency-domain solver, while providing the similar accuracy.  

In order to reduce computational loads, two FEM models 
(cavity and partially air-filled cavity models) are proposed. 
While the cavity model significantly reduces simulation time, 
the accuracy is not reliable due to the absence of air volume. It 
is discovered that the partially air-filled cavity model not only 
reduces computational efforts but also maintains accuracy for 
the electromagnetic simulation. To further improve the solution 
efficiency, two eigenvalue perturbation methods, RQI and 
IPIRQ are studied. The solution accuracy and efficiency are 
compared with MATLAB eigs command. The results show 
that the commonly used RQI method achieves high 

computation accuracy, but it is relatively slower than other 
solutions. Meanwhile, the proposed IPIRQ method achieves the 
best balance between accuracy and timing.  

Overall, the proposed antenna simulation approach, using 
partially air-filled model and the IPIRQ eigenvalue 
perturbation method, provides an eigenvalue solution in 14.82 
seconds for the 2.9GHz antenna at 1,000 με. In comparison, the 
conventional frequency domain solver requires 9,722 seconds 
(2hours, 42 minutes, 2 seconds). The efficiency improvement is 
significant. The proposed approach provides a simulation 
framework enabling much more efficient antenna sensor 
designs.  
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