CEE 6511 – Random Vibrations Spring 2017

4:35 - 5:55 pm TTh, Mason 2117

Instructor: Yang Wang, Ph.D. Associate Professor School of Civil and Environmental Engineering <u>yang.wang@ce.gatech.edu</u> http://wang.ce.gatech.edu/

Course Description: This course introduces concepts of random processes for modeling dynamic structural behavior under time-dependent excitations. Numerical tools will be provided for assessing the reliability of structural systems subject to uncertain dynamic loads. Both single and multiple degree-of-freedom structures will be studied. The course also presents experimental modal analysis of structures with random vibration data.

Prerequisites:

- CEE 6510 Structural Dynamics or equivalence
- Undergraduate degree in civil, mechanical or aerospace engineering
- Experience with MATLAB is recommended

Course References

Complete course notes will be handed out. Although no formal textbook is required, following books are good references.

- *Random Vibrations: Analysis of Structural and Mechanical Systems*, by L.D. Lutes and S. Sarkani.
- *Random Vibrations, Theory and Practice*, by P. H. Wirsching, T. L. Paez, and K. Ortiz.
- *Probability, Statistics, and Random Processes for Electrical Engineering*, by Alberto Leon-Garcia.

Course Requirements:

- Homework assignments (approximately 6 assignments): you are allowed to work in groups on all homework and out of class assignments, but any work you turn in must be completed by yourself.
- Midterm exam
- Final project: modal analysis and model updating of a four-story shear-frame structure.

Grading: Five homework assignments (30%), midterm (40%), final project (30%)

Outline

Week 1	Introduction; review of basic probability theory – sample space,
	probability axioms and basic laws, conditional probability and Bayes rule
Week 2	Independence, discrete and continuous random variables, functions of a
	random variable
	Homework 1 assigned
Week 3	Two random variables, joint, marginal, and conditional distributions;
	functions of two random variables, expectation, moments
	Homework 1 due, Homework 2 assigned
Week 4	Covariance, correlation, conditional expectation, iterated expectation
Week 5	Mean square error estimation, linear estimation, jointly Gaussian random
	variables
	Homework 2 due, Homework 3 assigned
Week 6	Random vectors, joint, marginal, and conditional CDF, PDF, PMF, mean
	and covariance matrix, Gaussian random vectors
Week 7	Random processes, IID processes, random walk, Markov processes,
	Gauss-Markov process
	Homework 3 due, Homework 4 assigned
Week 8	Mean and autocorrelation functions, Gaussian random processes,
	stationary random processes, strong and weak stationarity
	Lab Demo - Acceleration measurement of a laboratory MDOF structure
	using wireless sensors
Week 9	Midterm
	Autocorrelation functions, power spectral density
Week 10	Response of LTI system to WSS process input, output mean,
	autocorrelation, and PSD
	Homework 4 due, Homework 5 assigned
Week 11	Random vibrations of SDOF systems, white noise excitations
Week 12	Random vibrations of MDOF systems, proportional and non-proportional
	damping
	Homework 5 due, Homework 6 assigned
Week 13	Threshold crossings, reliability by first passage time, envelop process,
	distribution of extrema
Week 14	Experimental modal analysis: natural excitation technique (NExT) and
	eigen-system realization (ERA)
	Homework 6 due
Week 15	Recursive estimation, posterior PDF, condition PDFs for Gaussians,
	information interpretation
Week 16	Kalman filter, LTI system with sensor noise, Lyapunov recursion,
	measurement update, time update, steady-state Kalman filter
	Final project due