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Abstract 

In order to achieve a more accurate finite element (FE) model for an as-built structure, 

experimental data collected from the actual structure can be used to update selected 

parameters of the FE model. The process is known as FE model updating. This research 

compares the performance of two frequency-domain model updating approaches. The first 

approach minimizes the difference between experimental and simulated modal properties, such 

as natural frequencies and mode shapes. The second approach minimizes modal dynamic 

residuals from the generalized eigenvalue equation involving stiffness and mass matrices. Both 

model updating approaches are formulated as an optimization problem with selected updating 

parameters as optimization variables. This research also compares the performance of 

different optimization procedures, including a nonlinear least-square, an interior-point and an 

iterative linearization procedure. The comparison is conducted using a numerical example of 

a space frame structure. The modal dynamic residual approach shows better performance than 

the modal property difference approach in updating model parameters of the space frame 

structure.     

1 INTRODUCTION 

During the past few decades, significant achievements have been made in developing high-

resolution finite element (FE) models of various engineering structures. However, owing to the 

complexity of civil structures, structural behavior predicted by the FE simulation models 

(usually built according to design drawings) is generally different from the behavior of the 

actual constructed structure. For higher simulation accuracy, it is necessary to update the finite 

element model based on experimental measurements on the actual structure. Numerous FE 

model updating algorithms have been developed and practically applied in the past few decades 

[1]. Most algorithms can be categorized into two groups, i.e. frequency-domain approaches 

and time-domain approaches. Frequency-domain approaches update an FE model using 

frequency-domain structural characteristics extracted from experimental measurements, such 

as natural frequencies and vibration mode shapes [2, 3]. On the other hand, time-domain 

approaches directly utilize measured time histories for model updating, with estimator 

techniques such as extended Kalman filters [4].  

This research compares the performance of two frequency-domain model updating 

approaches. The first approach being studied attempts to minimize the difference between 

experimental and simulated modal properties. This approach will be referred as the modal 

property difference approach. For example, Jaishi & Ren [2] proposed an objective function 

consisting of difference in simulated and experimentally-measured modal flexibilities for 
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updating the model of a beam structure. Another category of model updating approach, referred 

as the modal dynamic residual approach, minimizes modal dynamic residuals from the 

generalized eigenvalue equation involving stiffness and mass matrices. For example, Farhat 

and Hemez [3] proposed an iterative least-square algorithm for updating element stiffness and 

mass properties, which effectively minimizes the 2-norm of the modal dynamic residual vector.  

In essence, with selected updating parameters as optimization variables, both modal property 

difference and modal dynamic residual approaches are formulated as an optimization problem. 

Each optimization problem can be solved by various optimization procedures. This research 

compares the performance of a number of optimization procedures, including a nonlinear least-

square approach, an interior-point approach [5], and an iterative linearization approach [6]. 

The rest of the paper is organized as follows. The formulations of both model updating 

approaches are presented first. Multiple relevant optimization procedures are then described. 

Performance of both model updating approaches using different optimization procedures is 

compared with a numerical example of a space frame structure. Finally, a summary and 

discussion are provided. 

2 MODEL UPDATING APPROACHES AND OPTIMIZATION PROCEDURES 

2.1 Model updating approaches 

For updating the stiffness parameters of a linear structure, the stiffness matrix can be 

formulated as a matrix function of the parameter vector 𝛂 ∈ ℝ𝑛𝛼 .  Notation nα represents the 

total number of updating parameters; the j-th (j = 1,…, nα ) entry of 𝛂, αj , represents a stiffness 

parameter to be updated (e.g. a Young's modulus value or the stiffness value of a support 

spring), which is to be treated as an optimization variable in the updating process. In this study, 

α represents the relative change percentage from initial value of each parameter; 

𝐊(𝛂) = 𝐊𝟎 + ∑ 𝛼𝑗𝐊0,𝑗

𝑛𝛼

𝑗=1

 (1)  

where K denotes the structural stiffness matrix; K0 is the initial nominal stiffness matrix prior 

to model updating (usually generated based on design drawings and nominal material 

properties); K0,j is a constant matrix that corresponds to the contribution of the associated 

updating parameter αj. In addition, it is assumed that the structural mass matrix is accurate 

enough and does not require updating.  

2.1.1 Modal property difference approach 

The modal property difference approach is usually formulated as an optimization problem 

that attempts to minimize the difference between experimental and simulated eigenvalues and 

eigenvectors of the structural system. In comparison with experimental modal properties (𝛌 

and 𝛙) obtained from dynamic testing on the actual structure in the field, the simulated modal 

properties (𝝀FE and 𝛙FE) are generated by the FE model. In practice, not all degrees of freedom 

(DOFs) can be instrumented and measured. To reflect this in the formulation, 𝛙m represents 

entries in 𝛙 that can be measured, and 𝛙u  represents these not measured. Eq. 2 shows the 

optimization problem for the modal property difference approach. The optimization variables 

include the vector α containing stiffness parameters to be updated, and the simulated modal 

properties (𝛌FE, 𝛙FE,m
 and 𝛙FE,u

). 
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minimize
  

∑ {(
𝜆𝑖

FE − 𝜆𝑖

𝜆𝑖

)

2

+ (
1 − √MAC𝑖

√MAC𝑖

)

2

}

𝑛modes

𝑖=1

 (2a) 

subject to  [𝐊(𝜶) − 𝜆𝑖
FE𝐌] {

𝛙𝑖
FE,m

𝛙𝑖
FE,u } = {𝟎} (2b) 

MAC𝑖 =
{(𝛙𝑖

m)
T

𝛙𝑖
FE,m

}
2

‖𝛙𝑖
m‖

2

2
‖𝛙𝑖

FE,m
‖

2

2,   𝑖 = 1, ⋯ , 𝑛modes (2c) 

Lα≤α≤ Uα (2d) 

𝐿
𝛙𝑖

FE,m ≤ 𝛙𝑖
FE,m ≤ 𝑈

𝛙𝑖
FE,m,  𝑖 = 1, ⋯ , 𝑛modes (2e) 

𝐿
𝛙𝑖

FE,u ≤ 𝛙𝑖
FE,u ≤ 𝑈

𝛙𝑖
FE,u,  𝑖 = 1, ⋯ , 𝑛modes (2f) 

where nmodes denotes the number of available experimentally-measured modes being used for 

model updating; 𝜆𝑖
FE and 𝜆𝑖 represent the i-th simulated (from FE model) and experimental 

eigenvalues, respectively; ‖∙‖2 denotes the 2-norm of a vector. MACi represents the modal 

assurance criterion evaluating the difference between the i-th simulated and experimental 

eigenvectors at the measured DOFs, i.e. between 𝛙𝑖
FE,m

 and 𝛙𝑖
m; Lα and Uα denote the lower 

and upper bounds for the optimization variable vector α Similarly, 𝐿
𝛙𝑖

FE,m, 𝐿
𝛙𝑖

FE,u and 𝑈
𝛙𝑖

FE,m, 

𝑈
𝛙𝑖

FE,u represents the lower and upper bounds for the 𝛙𝑖
FE,m

 and 𝛙𝑖
FE,u

. Note that the sign “≤” 

is overloaded to represent element-wise inequality; M denotes the structural mass matrix.  

2.1.2 Modal dynamic residual approach 

In comparison with the modal property difference approach, the modal dynamic residual 

approach attempts to minimize the residuals of the generalized eigenvalue equations. Matrices 

given by the FE model are used in combination with experimentally measured modal properties 

for calculating the modal dynamic residuals during evaluation of the objective function.  

minimize ∑ ‖[𝐊(𝛂) − 𝜆𝑖𝐌] {
𝛙𝑖

m

𝛙𝑖
FE,u}‖

2𝑛modes

𝑖=1

 (3a)  

subject to  Lα≤α≤ Uα (3b) 

                                   𝐿
𝛙𝑖

FE,u ≤ 𝛙𝑖
FE,u ≤ 𝑈

𝛙𝑖
FE,u,   𝑖 = 1, ⋯ , 𝑛modes (3c) 

where ‖⋅‖ denotes any vector norm; 𝜆𝑖 and 𝛙𝑖
m denote the i-th experimental eigenvalue and 

eigenvector entries corresponding to measured DOFs; 𝛙𝑖
FE,u

 corresponds to the unmeasured 

DOFs of the i-th eigenvector. In addition to stiffness parameters (α), unmeasured entries in 

mode shape vectors (𝛙FE,u), are also treated as optimization variables in the modal dynamic 

residual approach.  

2.2 Optimization procedures 

Given that both model updating approaches are formulated as an optimization problem, a 

number of optimization procedures can be used for solving the problem. For example, 

MATLAB optimization solvers are commonly adopted for solving optimization problems. 

This research mainly focuses on two MATLAB optimization solvers, i.e. lsqnonlin and 

MultiStart. Furthermore, for the modal dynamic residual approach, an iterative linearization 

procedure can also be used and is added into the comparison [6].  
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2.2.1 MATLAB lsqnonlin 

In this research, a nonlinear least-square optimization solver, ‘lsqnonlin’ in MATLAB 

optimization toolbox [5], is first adopted to numerically solve the optimization problems. In 

Eq. 2, for the modal property difference approach, the optimization variable contains the 

stiffness parameters, α, and the simulated modal properties, 𝛌FE, 𝛙FE,m and 𝛙FE,u. In Eq. 3, for 

the modal dynamic residual approach, the optimization variables include both the updating 

parameter, α, and the mode shape entries that correspond to the unmeasured DOFs, 𝛙FE,u.  

The optimization solver seeks a minimum of the objective function through Levenberg-

Marquardt algorithm, which is a combination of the steepest descent and the Gauss-Newton 

algorithm [7]. At every iteration, the algorithm linearizes the objective function (Eq. 2 or 3) 

with respective to the corresponding optimization parameters to determine the searching 

direction. When determining the step size at every iteration, the Levenberg-Marquardt 

algorithm includes a damping term to balance the contribution from the steepest descent and 

Gauss-Newton algorithm. When the current solution is far from a local optimum, the damping 

term value is set to be small, so that the algorithm is close to the steepest descent algorithm. 

On the other hand, when the current solution is close to a local optimum, the damping term 

value will be increased, and it becomes closer to the Gauss-Newton algorithm. The drawback 

of Levenberg-Marquardt algorithm implemented in MATLAB is that it does not allow to set 

the upper and lower bounds for the optimization variables.   

2.2.2 MATLAB MultiStart 

Because both optimization problems, Eq. 2 and 3, are non-convex, the nonlinear least-

square solver can be easily trapped into a local optimum near the starting point (i.e. α = 0). To 

increase the chance of finding a more optimal solution, the search can be started at other values 

of α within the bounds of αL and αU (Eq. 2 and 3). Designed towards this purpose, the 

‘MultiStart’ optimization solver in MATLAB randomly generates a number of starting 

points within the assigned bounds based on the uniform distribution. A local solver, i.e. 

lsqnonlin and fmincon, is then adopted to find a local minimum from each starting point. 

The fmincon optimization solver seeks a minimum of the objective function through the 

interior-point algorithm, which performs a direct-step or a conjugate-gradient search at each 

iteration [5]. Finally, the smallest value among all the local minima is determined as the best 

solution. The more starting points that the MultiStart solver generates and searches from, 

the higher possibility that the final solution is closer to the global optimum. The associated 

downside, as expected, is the increased computational effort. Therefore, the selection of 

number of starting points is usually based on experience.  

2.2.3 Iterative linearization procedure 

As previously described, Eq. 3 leads to a non-convex optimization problem that is 

generally difficult to solve. However, if mode shape entries for unmeasured DOFs, 𝛙FE,u
 were 

held constant and not treated as an optimization variable, Eq. 3 degenerates to a convex 

optimization problem, for which global optimality can be guaranteed by convex optimization 

algorithms [8-10]. The only optimization variable is stiffness parameter vector, α, and the 

problem can be efficiently solved. Likewise, if the system parameter vector, α, were held 

constant, Eq. 3 also degenerates to a convex optimization problem with optimization variable 
𝛙FE,uonly. Therefore, an iterative linearization procedure can be adopted for finding a solution 

of the optimization problem in Eq. 3. The pseudo code and more detailed description of the 

procedure can be found in a previous study [6]. 
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3 NUMERICAL EXAMPLE 

In this section, the performance of two model updating approaches through different 

optimization procedures is evaluated using a space frame structure example (Figure 1). The 

space frame model contains 46 nodes, each node with 6 DOFs. Although mainly a frame 

structure, the segmental cross bracings in top plane and two side planes are truss members. 

Transverse and vertical springs (ky and kz) are allocated at both ends of the bridge to simulate 

non-ideal boundary conditions. Detailed description of the structural stiffness parameters can 

be found in a previous study [6].  It is assumed that 14 tri-axial accelerometers are instrumented 

for model updating. The 14 accelerometers are uniformly spaced on the structure, as shown in 

Figure 1. Section 3.1 describes the structural model updating using the presented model 

updating approaches and optimization procedures. Section 3.2 describes a sensitivity analysis 

of the updating parameters for the two model updating approaches. 

3.1 Model updating 

The main model updating variable, α, includes all the stiffness parameters to be updated. 

Shown in Zhu, et al [6], these parameters are divided into three categories. The first category 

includes six parameters, which are elastic moduli of the frame members along the entire length 

of the frame structure (E1~ E5) and the diagonal bracing truss members in top plane (E6). The 

second category contains ten parameters, which are the elastic moduli of diagonal bracing truss 

members in two side planes for different segments (ES2~ ES11). The third category contains 

stiffness parameters of the four types of support springs (ky1, kz1, ky2, and kz2). In total, twenty 

stiffness parameters will be updated, i.e. nα = 20. Table 1 lists the actual correct value of 

stiffness parameter, α. These values are the ideal correct solutions of the model updating 

processes.  

Modal properties of the structure with actual values of α are used as the “experimental” 

properties, i.e. 𝜆𝑖 and 𝛙𝑖
m in Eq. 2 and 3. Each model updating starts with nominal stiffness 

parameter values, i.e. 0% for all entries in α. Using different updating approaches and 

optimization procedures, model updating results from five cases are studied (Table 2). 

MATLAB lsqnonlin and MultiStart are applied to both modal property difference and 

 

Figure 1. Illustration of space frame structure and sensor instrumentation 

Table 1 Actual values of updating stiffness parameters α (relative change percentage from initial parameter 

values: %) 

Quantities throughout the entire bridge Spring 

E1 E2 E3 E4 E5 E6 ky1 kz1 ky1 kz2 

5.00 5.00 -5.00 -10.00 5.00 -5.00 -30.00 60.00 -30.00 60.00 

Segmental quantities 

ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 ES11 

-10.00 -10.00 -10.00 -5.00 -5.00 -5.00 -15.00 -10.00 -5.00 -5.00 
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modal dynamic residual approaches, while the iterative linearization procedure is only applied 

to the modal dynamic residual approach. The updated results of five cases will be compared 

with accurate values in Table 1 to evaluate the performance of the model updating approaches 

and the optimization procedures. For MATLAB lsqnonlin, the initial values of updating 

parameters are set to be zero. The upper bound and lower bounds of all parameters are set to 

be 1 and -1, respectively, which means that error of nominal stiffness parameters is assumed 

to be no larger than ±100%. When utilizing MATLAB MultiStart, the number of starting 

points is selected to be 30. For each approach, the updating is performed assuming different 

numbers of measured modes are available (i.e. modes corresponding to the lowest 3 to 6 natural 

frequencies).  

In Case 1(a), MATLAB lsqnonlin solver is applied on the modal property difference 

approach with all initial values of updating parameters, α, set to zero. The updating results 

show that the updated optimal values of parameters all stay very close to zero, with a standard 

deviation of 0.0002%. This means the optimization solver stopped at a local minimum near the 

starting point. As a result, errors of the updated parameters are large and the updating process 

provides little benefit.  

In Case 1(b), the MATLAB MultiStart solver is applied on the modal property difference 

approach, and MATLAB fmincon is selected as the local solver for better performance. The 

fmincon solver is selected over lsqnonlin because the Levenberg-Marquardt algorithm 

implemented in MATLAB lsqnonlin does not allow to set the lower and upper bounds for 

the optimization variables. As a result, the updating results of some starting points turns out to 

be beyond the assigned bounds. Table 3 summarizes the model updating results. The 

MultiStart solver generates updated values of α away from zero, i.e. the optimal solution 

has gone farther away from initial starting point, compared with Case 1(a). However, all the 

updated parameter changes are apparently different from the corresponding correct values 

shown in Table 1. For clear demonstration of updating accuracy, Figure 2 plots the relative 

errors of the updating results. The figure shows that the updating results have large errors, 

particularly for support spring stiffness (ky1, kz1, ky2, and kz2). In addition, by observing the 30 

sets of optimal results from the 30 starting points generated by MultiStart, most of the 

optimal solutions do not converge to the same set of value α.  

In Case 2(a), the optimization problem in the modal dynamic residual approach is solved by 

MATLAB lsqnonlin solver. In Case 2(b), the problem is solved by the MATLAB 

MultiStart solver with lsqnonlin as local solver. The results for the two cases are 

essentially identical, and therefore, both are presented by Table 4. In addition, the results also 

exactly matches between selecting lsqnonlin and fmincon as the local solver. For every 

available number of modes, all the updated parameter changes are close to the ideal correct 

values shown in Table 1.  Figure 3 plots the relative errors of the updating parameters, with 

different numbers of available modes. It shows that the largest updating error in all four 

scenarios is less than 0.006%. Furthermore, when using MultiStart, searches from all the  

Table 2 Model updating cases for comparison 

Case # Objective function Optimization procedure 

1(a) 
Modal property difference (Eq. 2)  

lsqnonlin 

1(b) MultiStart with fmincon 

2(a) 

Modal dynamic residual (Eq. 3)  

lsqnonlin 

2(b) MultiStart with lsqnonlin 

2(c) Iterative linearization 
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Table 3 Updated stiffness parameter changes (%) by minimizing modal property difference (Case 1(b) MATLAB 

MultiStart) 

Available 

modes 

Quantities throughout the entire bridge Spring 

E1 E2 E3 E4 E5 E6 ky1 kz1 ky1 kz2 

3 modes 9.36 0.49 -1.93 -8.84 -1.36 -11.05 -32.79 82.00 -4.63 -13.74 

4 modes -0.13 2.89 0.24 -2.29 -0.41 -0.12 -18.10 23.78 -28.66 19.44 

5 modes 9.23 -0.49 4.06 -5.18 -5.90 -5.14 -17.26 -6.85 -4.51 25.08 

6 modes 3.72 1.78 -0.91 1.50 -6.68 1.24 -21.57 26.27 6.63 26.27 

Available 

modes 

Segmental quantities 

ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 ES11 

3 modes -13.97 9.4 -3.46 5.88 -6.44 2.93 -3.21 6.06 -0.92 4.03 

4 modes -0.06 -1.77 0.04 0.89 -0.89 1.31 -0.15 -0.67 -4.94 -6.75 

5 modes 3.02 6.24 -1.19 -4.04 -1.41 -3.47 -2.36 4.83 6.92 -1.47 

6 modes -0.15 -0.9 -1.54 5.14 3.61 -2.32 -10.39 -2.53 -3.68 2.71 

 
 

Figure 2. Relative errors of the updated parameters by minimizing modal property difference (Case 1(b) MATLAB 

MultiStart) 

Table 4 Updated stiffness parameter changes (%) by minimizing modal dynamic residuals (Case 2(a) MATLAB 

lsqnonlin and Case 2(b) MATLAB MultiStart) 

Available 

modes 

Quantities throughout the entire bridge Spring 

E1 E2 E3 E4 E5 E6 ky1 kz1 ky1 kz2 

3 modes 5.00 5.00 -5.00 -10.00 5.00 -5.00 -30.00 60.00 -30.00 60.00 

4 modes 5.00 5.00 -5.00 -10.00 5.00 -5.00 -30.00 60.00 -30.00 60.00 

5 modes 5.00 5.00 -5.00 -10.00 5.00 -5.00 -30.00 60.00 -30.00 60.00 

6 modes 5.00 5.00 -5.00 -10.00 5.00 -5.00 -30.00 60.00 -30.00 60.00 

Available 

modes 

Segmental quantities 

ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 ES11 

3 modes -10.00 -10.00 -10.00 -5.00 -5.00 -5.00 -15.00 -10.00 -5.00 -5.00 

4 modes -10.00 -10.00 -10.00 -5.00 -5.00 -5.00 -15.00 -10.00 -5.00 -5.00 

5 modes -10.00 -10.00 -10.00 -5.00 -5.00 -5.00 -15.00 -10.00 -5.00 -5.00 

6 modes -10.00 -10.00 -10.00 -5.00 -5.00 -5.00 -15.00 -10.00 -5.00 -5.00 

 
 

Figure 3. Relative errors of the updated parameters by minimizing modal dynamic residuals (Case 2(a) 

MATLAB lsqnonlin and Case 2(b) MATLAB MultiStart) 
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30 starting points converged to the optimal solution in the end. This indicates that the 

optimization problem in the modal dynamic residual approach has much better convexity than 

the modal property difference approach.  

Finally, in Case 2(c), the iterative linearization procedure is applied on the modal dynamic 

residual approach. The model updating results are shown in Table 5. For every available 

number of modes, most of the optimal results are close to the ideal correct values. 

Subsequently, Figure 4 plots the relative errors of the updating parameters, with different 

numbers of available modes. Although compared to results from MATLAB toolboxes, the 

error is relative larger, especially for E4, the overall accuracy of the iterative linearization 

approach is still acceptable. 

3.2 Sensitivity analysis 

The results in Section 3.1 indicate that the convexity of the modal dynamic residual 

approach appears better than that of the modal property difference approach. In this section, 

sensitivity analysis of the objective functions against an updating parameter is conducted to 

validate the hypothesis.  

To perform the sensitivity analysis of an objective function (Eq. 2 or Eq. 3) against an 

updating parameter, the objective function is evaluated by changing the parameter value while 

holding all other parameters constant. If equality constraints exist, the relevant parameters are 

also updated to satisfy the constraints. In this paper, parameter E1, Young's modulus of 

longitudinal top chord of the space frame, is chosen for the sensitivity study. As listed in Table 

1, the ideal correct value of E1 is 5%. In the sensitivity study for each model updating approach, 

the objective function value is calculated while changing E1 around its correct value, from -3%  

8%, while keeping all other stiffness parameters at their optimal values. As for the modal 

Table 5 Updated stiffness parameter changes (%) by minimizing modal dynamic residuals (Case 2(c) iterative 

linearization procedure) 

Available 

modes 

Quantities throughout the entire bridge Spring 

E1 E2 E3 E4 E5 E6 ky1 kz1 ky1 kz2 

3 modes 5.01 5.01 -5.40 -9.07 5.00 -5.00 -30.00 59.97 -30.00 60.01 

4 modes 5.00 5.01 -5.53 -8.69 5.00 -5.06 -29.99 59.88 -30.00 60.01 

5 modes 5.00 5.00 -5.32 -9.09 5.01 -5.01 -30.00 59.94 -30.00 60.03 

6 modes 5.00 5.00 -5.26 -9.35 5.01 -5.00 -30.00 59.97 -30.00 60.01 

Available 

modes 

Segmental quantities 

ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 ES11 

3 modes -9.27 -10.01 -9.95 -5.12 -5.07 -5.02 -14.95 -10.05 -4.98 -4.95 

4 modes -9.18 -9.98 -9.96 -5.08 -4.92 -5.05 -14.88 -10.15 -4.99 -4.94 

5 modes -9.35 -9.99 -10.07 -4.97 -4.90 -5.08 -14.97 -10.01 -4.93 -5.03 

6 modes -9.45 -10.00 -10.04 -4.98 -4.97 -5.01 -14.99 -9.98 -4.96 -5.01 

 
 

Figure 4. Relative errors of the updated parameters by minimizing modal dynamic residuals (Case 2(c) 

iterative linearization procedure) 
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property difference approach, the simulated modal properties (𝛌FE, 𝛙FE,m and 𝛙FE,u) are updated 

with respect to the equality constrains in Eq. 2(d). 

Figure 5 (a) ~ (c) show how the objective function value of modal property difference 

approach changes with respect to E1. As shown in Figure 5 (a), the objective function achieves 

minimum when the selected parameter E1 is at the ideal value of 5%, as expected. Figure 5 (b) 

and (c) are the close-up views of Figure 5 (a), when E1 is at -0.03% ~ 0.03%  and 4.95 ~ 5.05%,  

respectively.  Although Figure 5 (a) appears to show a satisfactory convexity of the modal 

property difference approach, Figure 5 (b) and (c) reveal that the objective function of the 

modal property difference approach does not decrease monotonically with the increase of the 

updating parameter. Many local minima exist within very small ranges of E1. This explains 

why in both Case 1(a) and 1(b) the modal property difference approach stops at a local 

minimum around the starting point. Figure 5 (d) ~ (f) show the sensitivity analysis results of 

the modal dynamic residual approach. As seen in Figure 5 (d), the objective function achieves 

minimum when E1 is at the correct value of 5%, which is also as expected.  In addition, Figure 

5 (e) and (f) show that in both close-up views, the objective function of the modal dynamic 

residual approach does not have any zig-zag pattern with many local minima (as with the modal 

property difference approach). Therefore, the figures demonstrate that the modal dynamic 

residual approach can have better convexity than the modal property difference approach 

within the assigned bounds.  This concurs with the better updating performance of Cases 2(a) 

through 2(c), as compared with Cases 1(a) and 1(b). 

4 CONCLUSIONS 

This study investigates two frequency-domain FE model updating approaches and three 

optimization procedures. The modal property difference approach aims to minimize the 

difference in natural frequencies and mode shapes obtained from the experimental data and 

analytical model. The modal dynamic residual approach intends to minimize the residuals of 

the generalized eigenvalue equation. MATLAB lsqnonlin and MultiStart optimization 

     
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Sensitivities of the objective functions to the updating parameter E1 
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solvers can be applied on both model updating approaches, and the iterative linearization 

optimization procedure is also adopted for solving the modal dynamic residual approach.   

The presented model updating approaches and optimization procedures are evaluated using 

a numerical example of a space frame bridge. The modal property difference approach does 

not achieve reasonable model updating accuracy with either MATLAB lsqnonlin or 

MultiStart solver. The modal dynamic residual approach can accurately identify all 

updating parameters using both MATLAB optimization solvers. Although the results from the 

iterative linearization approach is worse than those from the MATLAB toolboxes in this 

example, the overall updating accuracy is still acceptable.  

Furthermore, the sensitivity analysis of the updating variables is conducted to study the 

convexity of both model updating approaches within the assigned bounds. The results shows 

that the objective function of the modal property difference approach has many local minima 

within the assigned bounds of an updating parameter, while the modal dynamic residual 

approach only has one local minimum that is also the global minimum. The sensitivity analysis 

demonstrates that the modal dynamic residual approach has better convexity than the modal 

property difference approach.  Future research will continue to investigate the model updating 

approaches on more complicated structural models, through both simulations and experiments. 

In the meantime, other optimization procedures will be investigated for accurately and 

efficiently solving the model updating problems.  
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