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Abstract: The unscented Kalman filter (UKF) can be used to identify model parameters of 

structural systems from the measurement data. However, the standard UKF may provide unreliable 

and non-physical estimates, since no parameter constraints are incorporated in the identification 

process. This paper discusses and compares several constrained UKF (CUKF) methods for 

parameter identification of structural systems. The effectiveness and robustness of the methods are 

evaluated through numerical simulation on a Bouc-Wen hysteretic system. The results demonstrate 

that with properly handling of the constraints, the identification accuracy can be improved. The 

proposed CUKF method is further validated using experimental data collected from a full-scale 

reinforced concrete structure. Based on the identified model parameters, the updated models can 

achieve more accurate simulation responses than the initial model.    

Keywords: unscented Kalman filter, parameter constraints, online identification, full-scale 

experiment, dynamic analysis 

1 Introduction 

In civil engineering, finite element (FE) models are widely used to simulate behaviors of structures 

and provide guidance for design and maintenance. The validity of an FE model depends on the 

suitable values of model parameters. In practice, however, there are always uncertain material 

properties and boundary conditions in constructed structures. As a result, nominal property values 

and model simplification are usually adopted, causing inaccurate and unreliable simulation results. 

With the increasing availability of field measurements from constructed structures, opportunities 

have risen for the development of identification techniques which can tune model parameters 

toward providing more reliable simulation results [1]. Besides improving simulation performance, 

parameter identification techniques also find extensive application in structural health monitoring 

(SHM). Structural damages would result in changes of material properties, especially reduction of 

stiffness. By identifying stiffness parameters over time, structural damages, even some hardly 

noticeable ones, can be detected and the identification results may help evaluating condition of 

structures [2, 3]. 

Experimentally measured data serve as the baseline for structural system identification. The 

development of sensing technology has facilitated the implementation of vibration experiments, 

from which dynamic responses of structures can be measured. Various algorithms have been 

developed for identifying model parameters from the dynamic responses, which provide relevant 

information regarding the structural properties of interest (e.g. stiffness, damping and mass). 

Among these parameter identification algorithms, the nonlinear extensions of Kalman filter, 

especially the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), have attracted 

attention from researchers due to low computational complexity and broad applicability. Treated 
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as augmented states, model parameters can be estimated together with the original system states 

through the measurement data. Based on Gaussian assumption, the EKF and the UKF efficiently 

propagates the state estimate and covariance, and provide an approximately optimal estimation. 

The EKF linearizes both the dynamic equation and measurement equation using Taylor series 

expansion, and recursively updates the states and parameters through the linearized system. EKF 

based structural parameter identification has been extensively reported [4-10]. The EKF performs 

well for structures with mild nonlinearity but encounters challenges for highly nonlinear structures 

due to large error caused by linearization [11].  

As a powerful alternative to the EKF, the UKF has also been investigated and applied on parameter 

identification for structural systems. The UKF propagates the first two moments of the states and 

parameters based on unscented transformation. At each iteration, the UKF generates a set of 

sampling points, called sigma points, to approximate the probability distribution of the states and 

parameters. These sigma points can be easily transferred through the nonlinear equations, and the 

output sigma points are used to update the states and parameters. This gradient-free propagation 

scheme is remarkably attractive for parameter identification of complicated structures, for which 

it is usually difficult to evaluate the Jacobian derivatives of system equations analytically. Another 

advantage of the UKF is that the UKF exhibits a higher order of accuracy than the EKF [12]. These 

merits have motivated research work towards application of the UKF on structural parameter 

identification of highly nonlinear systems [11, 13-17].   

Most of the previously cited literature deals with parameter identification in the context of 

estimation without considering constraints. However, most model parameters of interest follow 

physical laws and cannot take arbitrary values. For example, stiffness values cannot be negative 

for a regular structure member. This fact necessitates the application of parameter constraints in 

the UKF identification. To meet this requirement, many approaches have been developed for the 

UKF with constraints. A simple but effect way to implement constraints is projecting the sigma 

points on the feasible domain [18]. As the weighted average of the constrained sigma points, the 

state and parameter estimates heuristically follow the applied constraints. However, the projected 

sigma points may result in an asymmetric distribution, and thus a biased estimate. Wu and Wang 

[19] proposed a symmetric sigma point constraining scheme to handle box constraints. Calabrese 

et al. [13] utilized this box constrained sigma point method, together with a covariance adaptation 

algorithm, for nonlinear structural system identification. This method preserves the symmetric 

distribution of the sigma points and achieves first-order accuracy of unscented transformation. 

Because the weighting factors are adjusted based on a linear method [20], the covariance of the 

constrained sigma points may not represent the covariance of the states and parameters. In addition, 

Tamuly et al. [21] adapted the idea from [22] and replaced the constrained parameters by 

continuous functions whose values were within the constrained bounds. As a result, the original 

problem is converted to a problem of estimating new parameters using the classical UKF. However, 

identifiability of the problem is reduced because different values of the new parameter could 

correspond to the same value of the original parameter. 

This paper reviews and discusses in detail the aforementioned projected sigma point method and 

box constrained sigma point method. Following the discussion, an improved constrained sigma 

point method is proposed for the implementation of general constraints. In addition, the weighting 

factor is adjusted based on the distance between the corresponding sigma point and the estimate. 

In this way, the constrained sigma points can achieve second-order accuracy of unscented 

transformation. Besides the constrained sigma point method, this research proposes a constrained 
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gain method, which restricts the Kalman gain rather than modifying the sigma points to ensure that 

the state estimates satisfy necessary constraints.     

The rest of paper is organized as follows. Section 2 briefly reviews the UKF for parameter 

identification. Section 3 discusses different techniques for applying constraints in the UKF. 

Section 4 presents the parameter identification examples of a Bouc-Wen hysteretic system and a 

full-scale reinforced concrete structure. In the end, Section 5 provides a summary.   

2 Unscented Kalman filter (UKF) for parameter identification 

This section presents the UKF for structural model parameter identification. The UKF is a 

nonlinear variant of Kalman filter, which propagates the first two moments of states through 

suitably selected sigma points and corresponding weights. The UKF can be utilized for parameter 

identification by forming an augmented state vector 𝐱 = [𝐪; �̇�;  𝛉], where the semicolons denote 

the concatenation of vectors. Here, 𝐪 is the structural displacement vector, �̇� is the velocity vector, 

and 𝛉  contains the parameters to be updated. The general dynamic system is governed by a 

nonlinear state-space equation as: 

�̇� = 𝒇(𝐱, 𝐮,𝐰) (1) 

where 𝐮 is known excitation applied on the system and 𝐰 is a zero-mean white Gaussian process 

noise with 𝔼[𝐰(𝑡)𝐰T(𝑡 + 𝜏)] = 𝚺𝐰𝛿(𝜏). At time 𝑡 = 𝑘∆𝑡, the measurement 𝐲𝑘 is given as:  

𝐲𝑘 = 𝒉(𝐱𝑘, 𝐮𝑘, 𝐯𝑘) (2) 

where 𝐯𝑘 is the zero-mean white Gaussian measurement noise with 𝔼[𝐯𝑘𝐯𝑘+𝑙
T ] = 𝚺𝐯𝛿𝑙. 

As the state-space equation and measurement equation have noises, 𝐰 ∈ ℝ𝑛𝐰  and 𝐯𝑘 ∈ ℝ
𝑛𝐯 , 

entering those equations nonlinearly, the most general formulation of the UKF concatenates the 

process and measurement noise with the state vector 𝐱 ∈ ℝ𝑛𝐱  to form a further augmented state 

vector 𝐱𝑎 with dimension 𝑁 = 𝑛𝐱 + 𝑛𝐰 + 𝑛𝐯: 

𝐱𝑎 = [𝐱;𝐰; 𝐯] (3) 

At time 𝑡 = 𝑘∆𝑡, the estimate of the augmented state vector is: 

�̂�𝑘|𝑘−1
𝑎 = [�̂�𝑘|𝑘−1

T ; 𝟎; 𝟎] (4) 

with covariance matrix: 

𝚺𝐱𝑘|𝑘−1
𝑎 = [

𝚺𝐱𝑘|𝑘−1 𝟎 𝟎

𝟎 𝚺𝐰 𝟎
𝟎 𝟎 𝚺𝐯

] (5) 

The UKF estimation is separated into two main steps, i.e. measurement update step and time update 

step. Assuming by induction that the a priori estimate �̂�𝑘|𝑘−1
𝑎

 and its covariance matrix 𝚺𝐱𝑘|𝑘−1
𝑎  is 

known, 2𝑁 + 1 sigma points 𝔁𝑘|𝑘−1,𝑖
𝑎 , 𝑖 = 0, 1,⋯ , 2𝑁 + 1, are generated as: 
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𝔁𝑘|𝑘−1,0
𝑎 = �̂�𝑘|𝑘−1

𝑎   

(6) 
𝔁𝑘|𝑘−1,𝑖
𝑎 = �̂�𝑘|𝑘−1

𝑎 + (√(𝑁 + 𝜅)𝚺𝐱𝑘|𝑘−1
𝑎 )

𝑖

 𝑖 = 1, 2,⋯ , 𝑁 

𝔁𝑘|𝑘−1,𝑁+𝑖
𝑎 = �̂�𝑘|𝑘−1

𝑎 − (√(𝑁 + 𝜅)𝚺𝐱𝑘|𝑘−1
𝑎 )

𝑖

 𝑖 = 1, 2,⋯ , 𝑁 

where √∙ is the matrix square root and (∙)𝑖 refers to the i-th column of the matrix. 𝜅 is a scaling 

parameter, and can be any number as long as 𝑁 + 𝜅 > 0 [23]. The 2𝑁 + 1 weighting coefficients 

for the sigma points are given as: 

𝑊0 =
𝜅

𝑁 + 𝜅
  

(7) 

𝑊𝑖 =
1

2(𝑁 + 𝜅)
 𝑖 = 1, 2,⋯ , 2𝑁 

Using 𝔁𝑘|𝑘−1,𝑖
𝑎 = [𝔁𝑘|𝑘−1,𝑖

𝐱 ;  𝔁𝑘|𝑘−1,𝑖
𝐰 ;  𝔁𝑘|𝑘−1,𝑖

𝐯 ], the predicted measurement 𝔂𝑘|𝑘−1,𝑖 of each sigma 

point can be evaluated as: 

𝔂𝑘|𝑘−1,𝑖 = 𝒉(𝔁𝑘|𝑘−1,𝑖
𝐱 , 𝐮𝑘 , 𝔁𝑘|𝑘−1,𝑖

𝐯 ) 𝑖 = 0,1,⋯ ,2𝑁 (8) 

The predicted measurement �̂�𝑘|𝑘−1  of state 𝐱𝑘  is calculated as the weighted average of the 

predicted measurements of sigma points: 

�̂�𝑘|𝑘−1 =∑𝑊𝑖𝔂𝑘|𝑘−1,𝑖

2𝑁

𝑖=0

 (9) 

The innovation covariance matrix 𝚺𝐲𝑘|𝑘−1 can be evaluated as: 

𝚺𝐲𝑘|𝑘−1 =∑𝑊𝑖(𝔂𝑘|𝑘−1,𝑖 − �̂�𝑘|𝑘−1)(𝔂𝑘|𝑘−1,𝑖 − �̂�𝑘|𝑘−1)
T

2𝑁

𝑖=0

 (10) 

From the sigma points and the predicted measurements of sigma points, the cross covariance 

between the a priori estimate �̂�𝑘|𝑘−1 and its measurement �̂�𝑘|𝑘−1 can be calculated as: 

𝚺𝐱𝐲𝑘|𝑘−1 =∑𝑊𝑖(𝔁𝑘|𝑘−1,𝑖
𝐱 − �̂�𝑘|𝑘−1)(𝔂𝑘|𝑘−1,𝑖 − �̂�𝑘|𝑘−1)

T
2𝑁

𝑖=0

 (11) 

According to state estimation theory [23], the Kalman gain matrix is calculated as: 
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𝐋𝑘 = 𝚺𝐱𝐲𝑘|𝑘−1 (𝚺𝐲𝑘|𝑘−1)
−1

 (12) 

After measurement 𝐲𝑘 is available, the measurement residual is obtained: 

𝐫𝑘 = 𝐲𝑘 − �̂�𝑘|𝑘−1 (13) 

The a posteriori estimate �̂�𝑘|𝑘 is calculated using the Kalman gain matrix 𝐋𝑘 as: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋𝑘𝐫𝑘 (14) 

Along with the measurement update of the state, the covariance matrix 𝚺𝐱𝑘|𝑘  for the a posteriori 

estimate can be evaluated as: 

𝚺𝐱𝑘|𝑘 = 𝚺𝐱𝑘|𝑘−1 − 𝐋𝑘𝚺𝐲𝑘|𝑘−1𝐋𝑘
T  (15) 

In the time update step, 2𝑁 + 1 sigma points 𝔁𝑘|𝑘,𝑖
𝑎 , 𝑖 = 0, 1,⋯ , 2𝑁 + 1, are generated again 

using updated covariance matrix 𝚺𝐱𝑘|𝑘
𝑎  as: 

𝔁𝑘|𝑘,0
𝑎 = �̂�𝑘|𝑘

𝑎   

(16) 
𝔁𝑘|𝑘,𝑖
𝑎 = �̂�𝑘|𝑘

𝑎 + (√(𝑁 + 𝜅)𝚺𝐱𝑘|𝑘
𝑎 )

𝑖

 𝑖 = 1, 2,⋯ , 𝑁 

𝔁𝑘|𝑘,𝑁+𝑖
𝑎 = �̂�𝑘|𝑘

𝑎 − (√(𝑁 + 𝜅)𝚺𝐱𝑘|𝑘
𝑎 )

𝑖

 𝑖 = 1, 2,⋯ , 𝑁 

The corresponding weighting factors 𝑊𝑖, 𝑖 = 0, 1,⋯ , 2𝑁, are the same as those in Eq. (7). Using 

𝔁𝑘|𝑘,𝑖
𝑎 = [𝔁𝑘|𝑘,𝑖

𝐱 ;  𝔁𝑘|𝑘,𝑖
𝐰 ;  𝔁𝑘|𝑘,𝑖

𝐯 ] , each sigma point propagates through the nonlinear system to 

perform the time update: 

𝔁𝑘+1|𝑘,𝑖
𝐱 = 𝔁𝑘|𝑘,𝑖

𝐱 +∫ 𝒇(𝔁𝑘|𝑘,𝑖
𝐱 , 𝐮, 𝔁𝑘|𝑘,𝑖

𝐰 )𝑑𝑡
(𝑘+1)∆𝑡

𝑘∆𝑡

 𝑖 = 0, 1,⋯ , 2𝑁 (17) 

The a priori estimate �̂�𝑘+1|𝑘 can be calculated as the weighted average of the sigma points: 

�̂�𝑘+1|𝑘 =∑𝑊𝑖𝔁𝑘+1|𝑘,𝑖
𝐱

2𝑁

𝑖=0

 (18) 

The corresponding covariance matrix 𝚺𝐱𝑘+1|𝑘  can be evaluated as: 
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𝚺𝐱𝑘+1|𝑘 =∑𝑊𝑖(𝔁𝑘+1|𝑘,𝑖
𝐱 − �̂�𝑘+1|𝑘)(𝔁𝑘+1|𝑘,𝑖

𝐱 − �̂�𝑘+1|𝑘)
T

2𝑁

𝑖=0

 (19) 

Repeating Eq. (6) ~ Eq. (19), UKF can recursively update the system states for a nonlinear system. 

3 Constrained UKF (CUKF) 

Incorporating constraints in the UKF is of critical importance to reliable estimation, especially for 

system parameter identification. In this section, we describe several methods to incorporate 

constraints during the UKF identification process. Section 3.1 and Section 3.2 review the projected 

sigma point method and the box constrained sigma point method, respectively. Section 3.3 

proposes an improved constrained sigma point method, which retains both the mean and 

covariance of the state distribution. In Section 3.4, a constrained gain method is discussed.  

3.1 Projected sigma point method [18] 

This section introduces the projected sigma point method to implement constraints in the UKF. 

The basic strategy of this method is to project the sigma points on the feasible domain. The 

projected sigma points are utilized to calculate the state estimate and covariance matrix. Figure 1 

illustrates this method using a 2D example where the state estimate �̂� and covariance matrix Σ𝐱 
are listed as follows: 

�̂� = [
1
1
] Σ𝐱 = [

2 0.5
0.5 1

] (20) 

In Figure 1, the state estimate is denoted as the blue star sign, and the state covariance is 

represented by the blue dash line. Based on the state estimate and covariance, five sigma points 

are generated, denoted as blue diamond sign. The feasible domain in this illustration is 𝛀 =
{(𝑥1, 𝑥2) ∈ ℝ

2|𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 + 𝑥2 ≤ 3} , which can be represented by the triangle in the 

figure. It is shown that three original sigma points 𝔁1, 𝔁2, and 𝔁3 fail to satisfy the constraints. 

These points are projected onto the boundary of the feasible domain, and are denoted as red square 

 
Figure 1 Illustration of the projected sigma point method 
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signs 𝒫𝛀(𝔁𝑖). Based on the projected sigma points, the state estimate and covariance are updated, 

denoted as the red circle sign and red double dot line, respectively.   

When a general constraint 𝒈(𝐱) ≥ 0 is imposed on the system, the projection 𝒫𝛀 of the original 

sigma point 𝔁𝑖  on feasible domain 𝛀 can be computed by solving the following optimization 

problem: 

minimize
𝐱

   ‖𝐱 − 𝔁𝑖‖2
2

subject to    𝒈(𝐱) ≥ 0
 (21) 

where ‖∙‖2 denotes the ℓ2-norm. For some special cases, analytical solutions can be obtained [24]. 

1. Single scalar linear inequality 𝐚T𝐱 ≥ 𝑏, i.e. 𝑔(𝐱) = 𝐚T𝐱 − 𝑏 

𝒫𝛀(𝔁𝑖) = {
𝔁𝑖 − (𝐚

T𝔁𝑖 − 𝑏)𝐚 ‖𝐚‖2
2⁄ if 𝐚T𝔁𝑖 < 𝑏

𝔁𝑖 if 𝐚T𝔁𝑖 ≥ 𝑏
 (22) 

2. Box constraints 𝐱L ≤ 𝐱 ≤ 𝐱U (the sign “≤” is overloaded to represent entry-wise inequality) , 

i.e. 𝒈(𝐱) = {
𝐱 − 𝐱L
𝐱U − 𝐱

} 

𝒫𝛀(𝔁𝑖)𝑗 = {

(𝐱𝐋)𝑗 if (𝔁𝑖)𝑗 ≤ (𝐱𝐋)𝑗
(𝔁𝑖)𝑗 if (𝐱𝐋)𝑗 ≤ (𝔁𝑖)𝑗 ≤ (𝐱𝐔)𝑗
(𝐱𝐔)𝑗 if (𝔁𝑖)𝑗 ≥ (𝐱𝐔)𝑗

 (23) 

The projection of sigma points needs to be applied in both the measurement update step Eq. (6) 

and time update step Eq. (16). Note that even using the projected sigma points, the a posteriori 

estimate �̂�𝑘|𝑘 obtained from Eq. (14) may not necessarily follow the constraints. In such case, the 

same projection method Eq. (21) can be applied on the a posteriori estimate �̂�𝑘|𝑘.  

The projected sigma point method is simple but effective to implement constraints in the UKF. As 

shown in Figure 1, the projected sigma points are not necessarily symmetric around the state 

estimate �̂�. In addition, such sigma points may not capture the mean and covariance of the system 

state. As shown in the above example, the updated state estimate and covariance differ from the 

original ones, even though the original state estimate satisfies the applied constraints.  

3.2 Box constrained sigma point method [19] 

This section introduces the box constrained sigma point method, which can handle the box 

constraints: 

𝐱L ≤ 𝐱 ≤ 𝐱U (24) 

Similar to the projected sigma point method, the box constrained sigma point method implements 

constraints on the sigma points during the UKF process. Rather than being projected on the feasible 

domain i.e. Eq.(21), the sigma points outside of the feasible domain are moved back onto the 

boundary along the direction to the estimate. Meanwhile, the counterpart sigma points are moved 

correspondingly so that the new set of sigma points remain symmetric. In the measurement update 
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step, the sigma points are generated based on the distance 𝑑𝑖 and direction (√𝚺𝐱)𝑖 to the state 

estimate �̂�: 

𝔁0 = �̂�  

(25) 𝔁𝑖 = �̂� + 𝑑𝑖(√𝚺𝐱)𝑖 𝑖 = 1, 2,⋯ , 𝑁 

𝔁𝑖 = �̂� − 𝑑𝑖(√𝚺𝐱)𝑖 𝑖 = 1, 2,⋯ , 𝑁 

where 

𝑑𝑖 = min(√𝑁 + 𝜅, 𝑑𝑖
1, 𝑑𝑖

2)  

(26) 𝑑𝑖
1 = min

𝑗=1,2,⋯,𝑁
|(𝐱U)𝑗 − (�̂�)𝑗| |(√𝚺𝐱)𝑖,𝑗|⁄  

𝑑𝑖
2 = min

𝑗=1,2,⋯,𝑁
|(𝐱L)𝑗 − (�̂�)𝑗| |(√𝚺𝐱)𝑖,𝑗|⁄  

The weighting factors of the sigma points are modified according to a linear method with respect 

to the distance 𝑑𝑖 to the state estimate.  

𝑊0 = 𝑏  
(27) 

𝑊𝑖 = 𝑎 ∙ 𝑑𝑖 + 𝑏 𝑖 = 1, 2,⋯ , 2𝑁 

where 

𝑠 = 2∑𝑑𝑖

𝑁

𝑖=1

  

(28) 𝑎 =
2𝜅 − 1

2(𝑁 + 𝜅)(𝑠 − (2𝑁 + 1)√𝑁 + 𝜅)
 

𝑏 =
1

2(𝑁 + 𝜅)
−

2𝜅 − 1

2√𝑁 + 𝜅(𝑠 − (2𝑁 + 1)√𝑁 + 𝜅)
 

In the time update step, the sigma points can be constrained in the same way. Note that, similar to 

the projected sigma point method, even using the constrained sigma points, the a posteriori 

estimate �̂�𝑘|𝑘 obtained from Eq. (14) may not necessarily satisfy the constraints. In such case, the 

projection method Eq. (21) can be applied on the a posteriori estimate �̂�𝑘|𝑘. 

Figure 2 illustrates the box constrained sigma point method using a 2D example where the state 

estimate �̂� and covariance matrix Σ𝐱 are the same as in Eq. (20). The feasible domain is set as 𝛀 =
{(𝑥1, 𝑥2) ∈ ℝ

2|0 ≤ 𝑥1 ≤ 3, 0 ≤ 𝑥2 ≤ 3}, which can be represented by the rectangular in the figure. 

It is shown that three sigma points 𝔁1, 𝔁2, and 𝔁3 are out of the boundary. The new set of sigma 
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points 𝒞𝛀(𝔁𝑖) is denoted as red square sign. As shown in the figure, although the original sigma 

point 𝔁4  locates within the feasible domain, this sigma point is moved accordingly as the 

counterpart sigma point 𝔁2 is moved to the boundary. In this way, the new set of sigma points 

remain symmetric. Based on the new sigma points, the state estimate and covariance are updated, 

denoted as the red circle sign and red double dot line, respectively. 

As illustrated in the figure, the new set of sigma points maintains a symmetric distribution so that 

the updated state estimate equals to the original state estimate. However, as the weighing factors 

are modified using a linear method as per Eq. (27), the updated state covariance is different from 

the original state covariance. Furthermore, the box constrained sigma point method can only 

address box constraints, which limits the application of this method. 

3.3 General constrained sigma point method 

This section covers the general constrained sigma point method for the UKF. This method 

improves the box constrained sigma point method in two aspects. First, this method proposes a 

way to modify the weighting factors, based on which the new set of sigma points can retain both 

the mean and covariance of the state distribution. Secondly, this method can handle general 

constraints 𝒈(𝐱) ≥ 𝟎 in an efficient way. 

The sigma points together with corresponding weighting factors determine their statistic properties. 

The general constrained sigma point method still adopts Eq. (25) and Eq. (26) to adjust all the 

sigma points to be within the feasible domain. The determination of weighting factors is changed 

as follows: 

𝑊𝑖 =
1

2𝑑𝑖
2 𝑖 = 1, 2,⋯ , 2𝑁 

(29) 

𝑊0 = 1 −∑𝑊𝑖

2𝑁

𝑖=1

  

It can be easily proved that the weighted mean and covariance of the sigma points match the first 

two moments of the original state distribution (Appendix 1). Although the proposed method enjoys 

 
Figure 2 Illustration of the box constrained sigma point method 
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this desirable property, it should be noted that if the state estimate is close to the boundary, some 

weighting factors may grow too large and cause numerical difficulty for application. 

When the state variables encounter general constraints 𝒈(𝐱) ≥ 𝟎 rather than box constraints, it is 

usually difficult to find the analytical solution to the distance between the constrained sigma points 

and the state estimate. Here we propose a simple but effective backtracking line search method to 

handle general constraints. A scaling factor 𝛼 ∈ (0,1) is first chosen. 

The backtracking line search starts with 𝑑𝑖 = √𝑁 + 𝜅, and keeps reducing it by the scaling factor 

𝛼 until both the sigma points 𝔁𝑘|𝑘−1,𝑖
𝑎  and 𝔁𝑘|𝑘−1,𝑖+𝑁

𝑎  satisfy the constraints. The scaling factor is 

often chosen to be between 0.1 and 0.8, where 0.1 corresponds to a very crude search and 0.8 

corresponds to a finer search [24].  

Figure 3 illustrates the constrained sigma point method using a 2D example where the state 

estimate �̂� and covariance matrix Σ𝐱 are the same as in Eq. (20). A nonlinear constraint is required 

on the state: 

(𝐱 − [
1
1
])
T

[
2 −0.5
−0.5 1

]
−1

(𝐱 − [
1
1
]) < 1 (30) 

Algorithm – Backtracking line search 

Given constraints 𝒈(𝐱) ≥ 𝟎, state estimate �̂�𝑘|𝑘−1
𝑎 , direction (√𝚺𝐱)𝑖

, dimension 𝑁, and scalar 

factors 𝜅, 𝛼 ∈ (0,1) 

Initialize 𝑑𝑖 = √𝑁 + 𝜅 

1. while 𝒈(�̂�𝑘|𝑘−1
𝑎 + 𝑑𝑖(√𝚺𝐱)𝑖) < 𝟎 or 𝒈(�̂�𝑘|𝑘−1

𝑎 − 𝑑𝑖(√𝚺𝐱)𝑖) < 𝟎, 𝑑𝑖 ≔ 𝛼𝑑𝑖 

2. output 𝔁𝑘|𝑘−1,𝑖
𝑎 = �̂�𝑘|𝑘−1

𝑎 + 𝑑𝑖(√𝚺𝐱)𝑖, 𝔁𝑘|𝑘−1,𝑖+𝑁
𝑎 = �̂�𝑘|𝑘−1

𝑎 − 𝑑𝑖(√𝚺𝐱)𝑖 

 

 
Figure 3 Illustration of the general constrained sigma point method 
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The feasible domain 𝛀 can be represented by the region inside the black eclipse in Figure 3. It is 

shown that two sigma points are out of the boundary. The new set of sigma points is denoted as 

red square sign. Based on the new sigma points, the state estimate and covariance are updated, 

denoted as the red circle sign and red double dot line, respectively.  

In this example, the scaling factor is chosen to be 0.8. As the backtracking line search is inexact, 

the constrained sigma points do not locate on the boundary of the feasible domain but within it. 

Furthermore, it can be observed that both the updated state estimate and covariance are the same 

as the original ones. 

3.4 Constrained gain method 

This section describes the constrained gain method for the UKF. Instead of modifying the sigma 

points, the UKF can apply constraints by modifying the Kalman gain. Such idea has been 

investigated for state estimation using Kalman filter [25] and parameter identification using EKF 

[26]. The Kalman gain 𝐋𝑘 at time 𝑡 = 𝑘∆𝑡 of the unconstrained UKF (Eq. (12)) can be analytically 

solved by minimizing the trace of a posteriori state covariance matrix (Eq. (A.4)): 

minimize
𝐋

 Trace (𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋
T − 𝐋𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝚺𝐲𝑘|𝑘−1𝐋

T) (31) 

When general constraints 𝒈(𝐱) ≥ 𝟎 are imposed on the system, the Kalman gain of the constrained 

UKF can be numerically calculated by solving the optimization problem: 

minimize
𝐋

 Trace (𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋
T − 𝐋𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝚺𝐲𝑘|𝑘−1𝐋

T)

subject to  𝒈 (�̂�𝑘|𝑘−1 + 𝐋(𝐲𝑘 − �̂�𝑘|𝑘−1)) ≥ 𝟎
 (32) 

The optimal solution 𝐋∗ ensures that the a posteriori estimates �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋
∗(𝐲𝑘 − �̂�𝑘|𝑘−1) 

are guaranteed to satisfy the constraints 𝒈(�̂�𝑘|𝑘) ≥ 𝟎. Meanwhile, the corresponding covariance 

matrix 𝚺𝐱𝑘|𝑘  can also be calculated using 𝐋∗ in Eq. (15).  

If affine constraints 𝐀𝐱 − 𝐛 ≥ 𝟎 are needed on the state variables, the analytical solution to the 

optimization problem Eq. (32) can be derived. Here, 𝐀 ∈ ℝ𝑛𝑐×𝑛𝑥 is a constant coefficient matrix 

and 𝐛 ∈ ℝ𝑛𝑐 is a constant coefficient vector. Consider the i-th constraint in 𝐀𝐱 − 𝐛 ≥ 𝟎, which is 

simply a scalar inequality 𝑔𝑖(𝐱) = 𝐚𝑖
T𝐱 − 𝑏𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛𝑐. For a feasible 𝐱, the constraint is 

said to be active if the equal sign holds, i.e. 𝐚𝑖
T𝐱 = 𝑏𝑖; the constraint is said to be inactive if the 

strict greater-than relationship 𝐚𝑖
T𝐱 − 𝑏𝑖 > 0 holds [24]. At time  𝑡 = 𝑘∆𝑡, suppose that 𝑛𝑎𝑐 of the 

𝑛𝑐 inequality constraints are active. Denote by 𝐀a ∈ ℝ
𝑛𝑎𝑐×𝑛𝑥 the full-ranked 𝑛𝑎𝑐 rows of 𝐀 that 

correspond to the active constraints, and denote by 𝐛a ∈ ℝ
𝑛𝑎𝑐  the 𝑛𝑎𝑐 entries of 𝐛 that correspond 

to the active constraints. The optimization problem to compute the Kalman gain 𝐋 with equality 

constraint 𝐀a𝐱 − 𝐛a = 𝟎 is formulated as: 

minimize
𝐋

 Trace (𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋
T − 𝐋𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝚺𝐲𝑘|𝑘−1𝐋

T)

subject to  𝐀a (�̂�𝑘|𝑘−1 + 𝐋(𝐲𝑘 − �̂�𝑘|𝑘−1)) − 𝐛a = 𝟎
 (33) 
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The Kalman gain matrix �̃�𝑘 and the a posteriori estimate �̃�𝑘|𝑘 of the unconstrainted UKF are given 

by Eq. (12) and Eq. (14), respectively.  

�̃�𝑘 = 𝚺𝐱𝐲𝑘|𝑘−1 (𝚺𝐲𝑘|𝑘−1)
−1

 (34) 

�̃�𝑘|𝑘 = �̂�𝑘|𝑘−1 + �̃�𝑘𝐫𝑘 (35) 

Under mild assumptions, the solution of this equality constrained optimization problem is given 

as: 

𝐋𝑘 = �̃�𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘 − 𝐛a)(𝐫𝑘
T𝚺𝐲𝑘

−1𝐫𝑘)
−1
𝐫𝑘
T𝚺𝐲𝑘

−1 (36) 

Using this Kalman gain, the a posteriori estimate �̂�𝑘|𝑘 of constrained UKF is found to be related 

to the unconstrained UKF estimate �̃�𝑘|𝑘: 

�̂�𝑘|𝑘 = �̃�𝑘|𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘 − 𝐛a) (37) 

The general constrained gain method is applied only in the measurement update step. At the 

expense of increasing computational complexity, the a posteriori estimate is promised to satisfy 

the constraints. In addition, the analytical solution to the inequality constrained system can 

significantly accelerate the estimation process. Furthermore, without modifying sigma points, this 

method keeps the first two moments of the system state, which is a desirable property for reliable 

estimation.   

4 Application 

To evaluate the performance of the various constraining approaches in Section 3, parameter 

identification using simulation and experiment data is conducted. Section 4.1 presents parameter 

identification of a Bouc-Wen hysteretic system. Section 4.2 investigates the performance of 

constrained UKF through experimental data collected from a full-scale reinforced concrete frame 

structure. 

4.1 Bouc-Wen hysteretic system 

The Bouc-Wen model has been extensively used to describe the hysteresis phenomenon of various 

types of structures, including magnetorheological (MR) dampers and beam-column joints. 

Consider a single degree of freedom (SDOF) Bouc-Wen hysteretic model subject to earthquake 

excitation, as shown in Figure 4. The dynamic equation of this hysteretic system with mass 𝑚, 

damping coefficient 𝑐, stiffness 𝑘 and ground excitation  �̈�𝑔 is shown as: 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑧(𝑡) = −𝑚(�̈�𝑔(𝑡) + 𝑤(𝑡)) (38) 

Here the excitation to the system is 𝑢 = −𝑚�̈�𝑔(𝑡) , and the ground acceleration �̈�𝑔(𝑡)  is 

contaminated with zero-mean white Gaussian process noise with 𝔼[𝑤(𝑡)𝑤(𝑡 + 𝜏)] = Σ𝑤𝛿(𝜏). 
The nonlinear restoring force is 𝑟(𝑡) = 𝑘𝑧(𝑡), and 𝑧 is a hidden hysteretic displacement. A first-

order differential equation describes the hysteretic displacement: 
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�̇� = �̇� (1 − |𝑧|𝑛(𝛾 + 𝛽sgn(𝑧�̇�))) (39) 

Here 𝛽 , 𝛾 , and 𝑛  are dimensionless parameters controlling the shape and magnitude of the 

hysteresis loop; sgn(∙) is the signum function.  

In this simulation example, system parameters are set as 𝑚 = 1 kg, 𝑐 = 0.3 Ns/m, 𝑘 = 12 N/m, 

𝛽 = 2, 𝛾 = 1, and 𝑛 = 2. The parameters to be identified are 𝑐, 𝑘, 𝛽, 𝛾, and 𝑛, while the mass 𝑚 

is treated as known. A scaled El Centro earthquake of 40 s duration is adopted as the ground 

excitation.  The state-space system equation for parameter identification can be formulated as: 

𝐱 =

(

 
 
 
 
 

𝑞
�̇�
𝑧
𝑐
𝑘
𝛽
𝛾
𝑛)

 
 
 
 
 

               �̇� = 𝒇(𝐱, �̈�𝑔, 𝑤) =

(

 
 
 
 
 
 

�̇�

− (�̈�𝑔 + 𝑤) − (𝑐�̇� + 𝑘𝑧) 𝑚⁄

�̇� (1 − |𝑧|𝑛(𝛾 + 𝛽sgn(𝑧�̇�)))

0
0
0
0
0 )

 
 
 
 
 
 

 (40) 

Figure 5 plots the excitation �̈�𝑔 and simulated responses including displacement 𝑞, velocity �̇�, 

hysteretic displacement 𝑧, and the hysteretic loop of the SDOF Bouc-Wen hysteretic system. 

To identify both the system states and parameters, the absolute acceleration of the mass block is 

measured at 𝑡 = 𝑘∆𝑡 and the measurement equation is given as: 

𝑦𝑘 = −(𝑐�̇�𝑘 + 𝑘𝑧𝑘) 𝑚⁄ + 𝑣𝑘 (41) 

Here 𝑣𝑘  is zero-mean white Gaussian process noise with 𝔼[𝑣𝑘𝑣𝑘+𝑙] = Σ𝑣𝛿𝑙  contaminating the 

measurement results. 

Inequality constraints applied on the parameters are listed as follows: 

𝑐 ≥ 0, 𝑘 ≥ 0, 𝛽 + 𝛾 ≥ 0, 𝛽 − 𝛾 ≥ 0, 𝑛 ≥ 1 (42) 

All the constrained UKF methods described in Section 3, together with the unconstrained UKF, 

are used to identify the Bouc-Wen model parameters. As the linear inequality constraints cannot 

be directly implemented in the box constrained sigma point method, the backtracking line search 

 
Figure 4 Bouc-Wen hysteretic system 
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introduced in Section 3.3 is applied to find the suitable distance between the sigma points and the 

state estimate. 

4.1.1 Strictly feasible initial estimate 

In the first simulation, the initial parameter estimates are set as 𝑐0|−1 = 0.15 Ns/m, 𝑘0|−1 = 6 N/m, 

𝛽0|−1 = 1, 𝛾0|−1 = 0.5, and 𝑛0|−1 = 4, which strictly satisfy the constraints. The covariance of the 

process noise is set as Σ𝑤 = (10
−2  m s2⁄ )2, and the covariance of measurement noise is set as 

Σ𝑣 = (10
−2  m s2⁄ )2. To study the parameter identification performance of the constrained UKF 

methods, 100 independent runs of simulation are performed, each of which is conducted using 

randomly generated process noise and measurement noise.  

The run #1 is chosen as the example to show the time histories of the a posteriori estimates of the 

parameters (Figure 6). The results show that all the methods, including the unconstrained UKF, 

can recursively update all the parameters from their initial values to the corresponding true values. 

It can be observed from the close-up plot Figure 6(b) that the estimates of stiffness parameter 𝑘 

and damping coefficient 𝑐  converge faster than the estimates of hysteretic parameters, which 

remain not updated within the first 1.5 seconds. The reason is that at the beginning of vibration, 

the structure has not exhibited nonlinear behavior. After about 4 seconds, all the estimates reach 

values quite close to the true values. For this example, the unconstrained UKF, the general 

constrained sigma point method, and the constrained gain method perform nearly the same. On the 

other hand, the projected sigma point method and the box constrained sigma point method have 

slightly larger estimation error during the first 4 seconds, especially for hysteretic parameters. This 

difference is caused by the fact that the sigma points of these two methods cannot represent the 

first two moments of the states and parameters.   

 

Figure 5 Excitation and dynamic responses of the hysteretic system 
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Table 1 summarizes the averaged estimation errors at the end of identification process from the 

100 simulation runs on the Bouc-Wen model. The results indicate that using the strictly feasible 

initial estimate, all the constrained UKF methods can identify model parameters with acceptable 

accuracy. All estimation errors are less than 0.3%. Generally, the estimation errors of the 

 

  
(a) Entire time span (b) Close-up (0 ~ 5 s) 

Figure 6 Parameter identification results using strictly feasible initial estimate 

 

Table 1 Averaged estimation errors using strictly feasible initial estimate (%) 

Parameters UKF Proj. SP Box Cstr. SP Cstr. SP Cstr. Gain 

𝑐  0.0698 0.1956 0.2516 0.0815 0.0704 

𝑘  0.0104 0.0163 0.0178 0.0107 0.0103 

𝛽 0.1430 0.1670 0.1797 0.1435 0.1429 

𝛾 0.1501 0.2253 0.2709 0.1507 0.1507 

𝑛 0.0834 0.0921 0.0801 0.0865 0.0833 

 



16 

 

unconstrained UKF, the constrained sigma point method, and the constrained gain method are less 

than the errors of the other two methods. 

4.1.2 Marginally feasible initial estimate 

In the second simulation, the initial parameter estimates are set as 𝑐0|−1 = 0.15 Ns/m, 𝑘0|−1 = 6 

N/m, 𝛽0|−1 = 0.5, 𝛾0|−1 = 0.5, and 𝑛0|−1 = 4, which marginally satisfy the constraint 𝛽 − 𝛾 ≥ 0. 

This initial setting increases challenge for the parameter estimation, as a small perturbation may 

result in an infeasible estimate. Based on the same process noise and measurement noise 

covariance in Section 4.1.1, 100 independent runs of simulation are performed.  

The run #1 is chosen as the example to show the time histories of the a posteriori estimates of the 

parameters using the marginally feasible initial estimate (Figure 7). In this scenario, the 

identification results of the projected sigma point method slightly differ from the true parameter 

values. Except for the stiffness parameter 𝑘, all the other parameters cannot be updated correctly 

by the box constrained sigma point method. On the other hand, the general constrained sigma point 

method, which adopts the same backtracking line search but adjusts the weighting factors to retain 

 

  
(a) Entire time span (b) Close-up (0 ~ 5 s) 

Figure 7 Parameter identification results using marginally feasible initial estimate 
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the state covariance, can provide reliable identification results for all parameters. In addition, the 

unconstrained UKF and the constrained gain method can recursively update all the parameters 

from their initial values to the corresponding true values.  

Table 2 summarizes the averaged estimation errors at the end of identification process from the 

100 simulation runs on the Bouc-Wen model. Compared to the strictly feasible initial estimate, the 

marginally feasible initial estimate causes more errors in the parameter identification results. The 

least reliable method for this scenario is the box constrained sigma point method, which can only 

update the stiffness parameters correctly. The projected sigma point method performs better but 

identification errors of hysteretic parameters are greater than 5%. The constrained sigma point 

method provides more reliable identification results, with all errors are less than 5%. It is 

interesting that the unconstrained UKF can identify the model parameters with errors less than 1%. 

The constrained gain method performs the best and all the identification errors are less than 0.5%.  

In this example, the unconstrained UKF outperforms the methods adjusting sigma points and only 

the constrained gain method provides slightly better identification results than the unconstrained 

UKF. The reasons are described as follows. First, during the identification process, estimates by 

the unconstrained UKF happen to satisfy the constraints most of the time, even though the 

generated sigma points occasionally violate the constraints. Other researchers [11] also found in 

their examples that the unconstrained UKF could accurately identify hysteretic parameters without 

implementing constraints on the sigma points. Second, compared to the unconstrained UKF, the 

constrained gain method is less aggressive and prevents the a posteriori estimate from violating 

the constraints by restricting Kalman gain. Thus, when the unconstrained UKF performs well, the 

constrained gain method should perform well too; on the other hand, when the unconstrained UKF 

provides an unreasonable estimate, the constrained gain method utilizes a smaller gain in the 

measurement update and prevents the estimate from violating the constraints. Last but not least, 

all the other methods implement constraints by adjusting the sigma points, even when the estimate 

does not violate the constraints. 

In addition, besides adjusting the sigma points, the projected sigma point method changes both the 

mean and covariance of system state (as illustrated in Figure 1), while the box constrained sigma 

point method keeps the mean but changes the covariance of system state (as illustrated in Figure 

2). The modification of the state’s statistical properties could introduce more uncertainties and 

contribute to the large identification errors, as shown in Figure 7(b) and Table 2. As for the 

constrained sigma point method, although both mean and covariance are preserved, this method 

effectively puts much higher weight on the adjusted sigma points than those satisfying constraints, 

because the weight is inversely proportional to the distance square 𝑑𝑖
2 (Eq. (29) and Figure 3). This 

is somewhat counterintuitive as an originally good sigma point gets a lower weight but an adjusted 

sigma point gets a higher weight. As a result, the constrained sigma point method performs 

Table 2 Averaged estimation errors using marginally feasible initial estimate (%) 

Parameters UKF Proj. SP Box Cstr. SP Cstr. SP Cstr. Gain 

𝑐  0.1371 4.2143 46.3022 0.9263 0.1073 

𝑘  0.0200 0.8691 0.6412 0.5000 0.0130 

𝛽 0.5658 12.2363 77.5621 4.6934 0.3118 

𝛾 0.5545 6.7312 66.5106 2.6362 0.2675 

𝑛 0.3323 5.5192 48.1743 3.0070 0.1636 
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similarly as the unconstrained UKF and the constrained gain method when the initial setting is less 

challenging (Figure 6) but causes a larger error when the initial setting is more challenging (Figure 

7). 

4.2 Full scale concrete frame structure 

Four reinforced concrete frames were constructed and tested in the Structural Engineering and 

Materials Laboratory on Georgia Tech campus, as shown in Figure 8(a). The four frames are 

separate from each other, with a gap between every two neighboring frames. Each frame consists 

of two stories and two bays with a total height of 24 ft and a total length of 36 ft. When testing 

each frame, a 75-kip hydraulic linear inertial shaker was installed on the second elevated slab and 

utilized to excite the frame with a scaled El Centro record. The moving mass of the shaker can 

provide in-plane excitation along longitudinal direction. Experimental measurements from the 

frame #1 are used in this research. When constructing the frame, concrete was poured in five stages. 

Figure 8(b) illustrates the pour sequence for the frame. 

A total of 44 in-plane acceleration channels were installed to measure the dynamical responses of 

the concrete frame. Figure 9 illustrates the sensor instrumentation, including 27 channels along 

longitudinal direction (annotated by blue arrows) and 17 channels along vertical direction 

(annotated by red arrows). These sensors were installed at mid-length and quarter-length of each 

beam or column member. The sampling frequency was set as 200 Hz. 

  
(a) Reinforced concrete frame (b) Sequence of construction 

Figure 8 Full-scale test frame and pour sequence 
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Figure 9 Sensor instrumentation 
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Figure 10 plots two sets of example acceleration data collected by accelerometers A16 and A18, 

together with the corresponding frequency spectra. The response spectra indicate that the motion 

of the structure due to shaker excitation is significant in frequency range from 0 ~ 10 Hz, while 

higher frequency components also exist. 

A 2D FE model for the reinforced concrete frame is built using Euler-Bernoulli beam elements as 

shown in Figure 11. The model consists of 23 nodes, 24 elements, and 36 DOFs in total. Axial 

deformations of beam elements are neglected in this model. The three bases are modelled as fixed 

end. Composite sections are adopted to consider the contribution from both concrete and rebars. 

According to the sensor instrumentation and the finite element model, it is assumed that 15 DOFs 

are measured by sensors, as shown in Figure 11. 

  
(a) Acceleration of A16 (b) Frequency spectrum of A16 

  
(c) Acceleration of A18 (d) Frequency spectrum of A18 

Figure 10 Full-scale test frame and pour sequence 

 

 
Figure 11 FE model for the reinforced concrete frame 

 

Acceleration measurement direction

A2

A6

A10A18

A14A21

A31 A29A33A35

A16 A40 A38A42

A12

Table 3 Nominal values of Young’s moduli of concrete and steel (Unit: kips/in2) 

Material Young’s moduli 

Concrete 3,800 

Steel 28,000 
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Table 3 summarizes the nominal values of Young’s moduli of the concrete and steel rebars for the 

initial model.  

Five stiffness variables 𝛉 ∈ ℝ5 corresponding to the five concrete pours (Figure 8(b)) are selected 

for updating. For the structural members constructed during the i-th pour, variable 𝜃𝑖  represents the 

relative change of the actual Young’s modulus value (to be identified) from the nominal value in Table 3. 

Besides five stiffness variables 𝛉 ∈ ℝ5 , two damping ratios 𝛇 ∈ ℝ2  are also updated for 

constructing a Rayleigh damping matrix. To improve the computational efficiency, Guyan model 

reduction technique [27] is applied to condense the FE model to the 15 measured DOFs. Based on 

the condensed model, the dynamical responses are calculated through Newmark-beta method. The 

initial estimates are set as 𝜃𝑖,0|−1 = 0  and 𝜁𝑖,0|−1 = 0.02 . Inequality constraints of the model 

parameters are listed as follows: 

−0.3 ≤ 𝜃𝑖 ≤ 0.3, 0.001 ≤ 𝜁𝑖 ≤ 0.2 (43) 

Considering its robustness, only the CUKF using constrained gain method is conducted and 

compared with the unconstrained UKF. Figure 12 plots the time histories of the a posteriori 

parameter estimates of the reinforced concrete frame structure using the UKF and the CUKF on 

experimental data. The stiffness variables and damping ratios start updating from the beginning of 

vibration. After the significant change during the beginning 5 s, the parameter estimates gradually 

converge to constant values. It should be noted that estimates generated from the CUKF always 

stay within the feasible domain, while some estimates from the UKF violate the constraints during 

 
Figure 12 Identified stiffness variables and damping ratios from UKF and CUKF using 

experimental data 

 



21 

 

the identification process. For example, the UKF estimate of 𝜃1 decreases below −0.3 after about 

5 s, and the UKF estimate 𝜁1 grows above 0.2 at the beginning of estimation. Except for 𝜁1, the 

UKF and the CUKF provide different identification results for the model parameters. 

Table 4 summarizes the identification results provided by the UKF and the CUKF for the 

reinforced concrete frame structure using experimental data. Both the UKF and the CUKF results 

show that the stiffness values of members constructed by the 1st, 4th and 5th concrete pours decrease 

from the nominal value. However, the UKF and the CUKF provide opposite changes on the 

stiffness values of members constructed by the 2nd and 3rd concrete pours. The decrease in stiffness 

values of column members (𝜃1, 𝜃2 and 𝜃4) can be caused by the P-Δ effect. In this sense, the CUKF 

identification results of stiffness parameters are more reasonable than the UKF results. The 

damping ratios identified by the CUKF are reasonable for reinforced concrete structures, whose 

damping ratios typically range from 0.05 to 0.10 [28]. On the other hand, the UKF provides a 

reasonable value for 𝜁1 but 𝜁2 is higher than the normal expected range. 

Based on the parameter identification results from the UKF and CUKF, updated FE models are 

built. The dynamical responses of the reinforced concrete frame structure are simulated using the 

same excitation. Figure 13 plots the simulated acceleration responses of the frame structure at 

Table 4 Identification results using the UKF and the CUKF of the reinforced concrete frame 

structure using experimental data 

Parameters UKF CUKF 

𝜃1 −0.4045 −0.2931 

𝜃2 0.0542 −0.1236 

𝜃3 −0.2127 0.2803 

𝜃4 −0.0913 −0.2746 

𝜃5 −0.1236 −0.0021 

𝜁1 0.0696 0.0736 

𝜁2 0.1122 0.0720 

 

 

  
(a) Entire time span (b) Close-up (15.5 ~ 17.5 s) 

Figure 13 Simulated acceleration using initial model parameters and parameters updated by the 

UKF and CUKF 
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location A16 and A18 using initial model parameters and the updated parameter values from the 

UKF and CUKF algorithms. Acceleration responses of entire time span from 0 s to 40 s are plotted 

in Figure 13(a). The close-up plots of 15.5 s to 17.5 s are shown in Figure 13(b). The comparison 

shows that both the UKF and CUKF identified parameters provide acceleration responses close to 

measurement data, while initial model parameters cannot generate accurate acceleration response. 

To quantify the performance of the UKF and CUKF, Table 5 summarizes the root mean square 

(RMS) errors of the simulated acceleration responses for the entire 40 s time span. Compared with 

the initial FE model, both the UKF and CUKF updated FE models provide simulated responses 

with less RMS errors. With the help of applied constraints, the CUKF performs slightly better than 

the UKF.  It also should be emphasized that although FE models updated by the UKF and the 

CUKF provide similar dynamic responses, the parameters identified by the CUKF are more 

reasonable in the engineering sense. 

5 Conclusion 

This paper investigates parameter identification of structural systems using constrained UKF 

methods. Four constrained UKF methods are discussed, including the projected sigma point 

method, the box constrained sigma point method, the constrained sigma point method, and the 

constrained gain method. The first three methods implement constraints by modifying the sigma 

points, which either cannot retain the mean and covariance of the states or may cause numerical 

difficulties during application. The last method does not make any change on the sigma points but 

restricting the Kalman gain to ensure that the state estimates satisfy applied constraints.  Simulation 

on an SDOF Bouc-Wen hysteretic system demonstrates that the constrained gain method is the 

most robust way to implement constraints in the UKF, as it can provide reliable identification 

results for different initial estimates. The constrained gain method is further validated through 

experimental measurement data of a full-scale reinforced concrete frame structure. The 

identification results show that incorporating constraints during the estimation process can 

effectively prevent the parameters from being unrealistic. In addition, all the final estimates of the 

constrained gain method are within reasonable range while the UKF provides unreasonably high 

values for some stiffness and damping parameters. The updated model parameters are used to 

simulate the dynamical behaviors of the reinforced concrete frame structure. The simulation results 

show that acceleration responses of updated models are much closer to the measured responses 

than the initial model. In terms of achieving smaller RMS errors, the model updated by the 

constrained gain method performs better than the model updated by the UKF. 

Table 5 RMS error comparison of simulated acceleration responses of updated models from the 

UKF and CUKF (Unit: in/s2) 

Channel Initial UKF CUKF Channel Initial UKF CUKF 

A2 0.7727 0.3516 0.3413 A29 0.1734 0.1425 0.1384 

A6 1.5568 0.7475 0.7507 A31 0.0455 0.0500 0.0322 

A10 0.8014 0.3454 0.3322 A33 0.0536 0.0377 0.0316 

A12 1.3393 0.5828 0.5684 A35 0.1548 0.1434 0.1198 

A14 1.5241 0.7085 0.7072 A38 0.2009 0.1358 0.1404 

A16 1.9091 0.8847 0.8940 A40 0.1061 0.0594 0.0630 

A18 0.7764 0.3487 0.3363 A42 0.0846 0.0437 0.0453 

A21 1.5536 0.7524 0.7514     
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Appendix 

1. Weighted mean and covariance of the constrained sigma points 

The sigma points and corresponding weighting factors are calculated according to Eq. (25) and Eq. 

(29), respectively. The weighted mean of the sigma points 𝔁𝑖 equals to the state estimate �̂�: 

𝔼(𝔁) =∑𝑊𝑖𝔁𝑖

2𝑁

𝑖=0

 

(A.1)  = 𝑊0�̂� +∑𝑊𝑖 (�̂� + 𝑑𝑖(√𝚺𝐱)𝑖)

𝑁

𝑖=1

+∑𝑊𝑖 (�̂� − 𝑑𝑖(√𝚺𝐱)𝑖)

𝑁

𝑖=1

 

 = �̂�∑𝑊𝑖

2𝑁

𝑖=0

 

 = �̂�  

The weighted covariance of the sigma points equals to the state covariance 𝚺𝐱: 

ℂ𝕠𝕧(𝔁) =∑𝑊𝑖(𝔁𝑖 − �̂�)

2𝑁

𝑖=0

(𝔁𝑖 − �̂�)
T 

(A.2) 

 = 𝑊0(�̂� − �̂�)(�̂� − �̂�)
T 

     +∑
1

2𝑑𝑖
2 (�̂� + 𝑑𝑖(√𝚺𝐱)𝑖 − �̂�)

𝑁

𝑖=1

(�̂� + 𝑑𝑖(√𝚺𝐱)𝑖 − �̂�)
T
 

     +∑
1

2𝑑𝑖
2 (�̂� − 𝑑𝑖(√𝚺𝐱)𝑖 − �̂�)

𝑁

𝑖=1

(�̂� − 𝑑𝑖(√𝚺𝐱)𝑖 − �̂�)
T
 

 =∑(√𝚺𝐱)𝑖

𝑁

𝑖=1

(√𝚺𝐱)𝑖
T
 

 = 𝚺𝐱  

2. Solution to the equality constrained UKF 

The a posteriori estimate �̂�𝑘|𝑘 is calculated using the Kalman gain matrix 𝐋𝑘: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋𝑘(𝐲𝑘 − �̂�𝑘|𝑘−1) (A.3) 

The a posteriori covariance 𝚺𝐱𝑘|𝑘  is calculated as:  

𝚺𝐱𝑘|𝑘  = 𝔼 [(𝐱 − �̂�𝑘|𝑘−1 − 𝐋𝑘(𝐲𝑘 − �̂�𝑘|𝑘−1)) (𝐱 − �̂�𝑘|𝑘−1 − 𝐋𝑘(𝐲𝑘 − �̂�𝑘|𝑘−1))
T

] 
(A.4) 

 = 𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋𝑘
T − 𝐋𝑘𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝑘𝚺𝐲𝑘|𝑘−1𝐋𝑘

T  
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Consider the equality constrained optimization problem: 

minimize
𝐋

 Trace (𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋
T − 𝐋𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝚺𝐲𝑘|𝑘−1𝐋

T)

subject to  𝐀a (�̂�𝑘|𝑘−1 + 𝐋(𝐲𝑘 − �̂�𝑘|𝑘−1)) − 𝐛a = 𝟎
 (A.5) 

Using Lagrange multiplier 𝛎 ∈ ℝ𝑛𝑎𝑐 , the Lagrangian for the problem is: 

ℒ(𝐋, 𝛎) = Trace (𝚺𝐱𝑘|𝑘−1 − 𝚺𝐱𝐲𝑘|𝑘−1𝐋
T − 𝐋𝚺𝐲𝐱𝑘|𝑘−1 + 𝐋𝚺𝐲𝑘|𝑘−1𝐋

T) 
(A.6) 

 +𝛎T(𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a) 

Here 𝐫𝑘 = 𝐲𝑘 − �̂�𝑘|𝑘−1 is the measurement residual. The partial derivatives of ℒ(𝐋, 𝛎) with respect 

to 𝐋 and 𝛎, respectively, can be obtained as: 

𝜕

𝜕𝐋
ℒ(𝐋, 𝛎) = −2𝚺𝐱𝐲𝑘|𝑘−1 + 2𝐋𝚺𝐲𝑘|𝑘−1 + 𝐀a

T𝛎𝐫𝑘
T (A.7) 

𝜕

𝜕𝛎
ℒ(𝐋, 𝛎) = 𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a 

(A.8) 

The optimality requires that both partial derivatives are zero. Assume 𝐀a ∈ ℝ
𝑛ac×𝑛𝐱  is a full row-

rank matrix with rank(𝐀a) = 𝑛ac ≤ 𝑛𝐱. Solving the equation 
𝜕

𝜕𝐋
ℒ(𝐋, 𝛎) = 𝟎 for 𝐋 provides: 

𝐋 = 𝚺𝐱𝐲𝑘|𝑘−1𝚺𝐲𝑘|𝑘−1
−1 −

1

2
𝐀a
T𝛎𝐫𝑘

T𝚺𝐲𝑘|𝑘−1
−1  (A.9) 

Substituting Eq. (A.9) into the partial derivative Eq. (A.8) and solving the equation 
𝜕

𝜕𝛎
ℒ(𝐋, 𝛎) = 𝟎 

for 𝛎 provides: 

𝛎 = 2(𝐀a𝐀a
T)−1 (𝐀a (�̂�𝑘|𝑘−1 + 𝚺𝐱𝐲𝑘|𝑘−1𝚺𝐲𝑘|𝑘−1

−1 𝐫𝑘) − 𝐛a) (𝐫𝑘
T𝚺𝐲𝑘|𝑘−1

−1 𝐫𝑘)
−1

 (A.10) 

Finally, substituting 𝛎 into Eq. (A.9), the Kalman gain of CUKF can be rewritten as: 

𝐋 = �̃�𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘 − 𝐛a)(𝐫𝑘
T𝚺𝐲𝑘

−1𝐫𝑘)
−1
𝐫𝑘
T𝚺𝐲𝑘

−1 (A.11) 

Here �̃�𝑘 and �̃�𝑘|𝑘 are the unconstrained Kalman gain Eq. (34) and the unconstrained a posteriori 

estimate Eq.(35), respectively. 
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