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ABSTRACT   

In order to assess structural safety conditions, many vibration-based damage detection methods have been developed in 
recent years. Among these methods, transmissibility function analysis can offer advantages in easy and low-cost 
implementation, as well as independency to the magnitude and waveform of an excitation record. Harnessing these 
features, a decentralized structural damage detection procedure is proposed in this paper. The proposed procedure only 
requires measurements in one small area at a time, and thus, is ideal for using limited number of sensors upon a large scale 
structure. This study also investigates the nature of transmissibility functions for damage detection in an analytical manner, 
based on a chain-like spring-mass-damper system with multiple degrees-of-freedom (DOFs). The analytical derivation is 
validated through numerical simulation and laboratory experiments using mobile sensors. 

Keywords: Transmissibility function, damage detection, decentralized approach, local excitation and measurement, 
mobile sensors 
 

1. INTRODUCTION  
Large-scale civil structures, such as bridges, dams, and high-rise buildings may experience harsh operational environment 
or severe natural disasters during their lifespan. Taking bridges as an example,  more than one in nine of the bridges in the 
United States were categorized as structurally deficient, according to the 2013 ASCE Report Card for America’s 
Infrastructure[1]. It was estimated that a $20.5 billion annual investment is needed to substantially improve the bridge 
conditions, yet currently, only $12.8 billion is spent annually on the construction and maintenance of bridges. In order to 
efficiently utilize the limited resources and prioritize retrofit tasks, reliable evaluation of structural conditions is essential. 
Over the past few decades, structural health monitoring (SHM) systems have been widely studied for assessing the 
condition of large-scale civil structures [2, 3]. In an SHM system, various types of sensors, such as accelerometers, stain 
gauges, thermometers, displacement and velocity transducers, can be used for monitoring structural behavior. A data 
acquisition (DAQ) system usually collects all the sensor measurements at a central server. However, the SHM system still 
suffers from high cost. For example, the cost of installing a typical structural monitoring system in a mid-rise building can 
exceed a few thousand dollars per sensing channel [4]. To overcome the difficulty, decentralized SHM approaches can be 
explored. In contrast to centralized approaches that operate on an entire structure model and require data from the entire 
structure, a decentralized approach only requires a limited number of sensing channels, operates on a local part of a 
structure, and mainly requires local structural response data. 

In recent years, significant research efforts have been devoted to various structural damage detection techniques[5, 6]. 
Most of the techniques can be categorized as two groups. The first category contains local approaches, such as acoustic 
emission [7], laser image [8], radar image [9], and impact-echo [10], etc. These approaches are applied mainly to detect 
local structural defect, such as cracks and corrosion. The second category contains global approaches, which has been 
mainly applied with structural vibration data. The approaches are based on the assumption that damage induces changes 
in structural mass, damping, or stiffness. Such changes cause detectable variations in structure dynamic properties, such 
as frequency response functions, vibration modal properties, etc. For example, comprehensive reviews on vibration-based 
damage identification algorithms can be found in [5] and [6]. Nevertheless, very few studies have investigated 
decentralized structural damage detection. One such example is [11], where frequency response functions are adopted to 
locate substructure damage on building structures under earthquake excitation. Measurement of the excitation is required 
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calculating frequency response functions.  Another example is a decentralized blind source separation algorithm proposed 
to use only a few sensor measurements at a time for system identification when disturbances contain narrowband 
frequencies [12]. 

Among vibration-based damage identification approaches, transmissibility function analysis attracts considerable interest 
due to its simple and low-cost implementation, effectiveness in damage identification, and independency to the magnitude 
and waveform of the excitation records. Harnessing these features, transmissibility functions can be exploited for 
decentralized structural damage detection without measurement of dynamic excitations. A number of researchers 
investigated the application of transmissibility function analysis for damage detection. For example, Zhang et al. studied 
the performance of transmissibility functions for damage detection within various frequency ranges through a laboratory 
experiment[13]. In the experiment, a piezoceramic patch actuator was used to excite a cantilever beam; translational and 
curvature transmissibility functions were adopted to calculate damage indicators and successfully locate damage. Kess and 
Adams analyzed the effects of operational and environmental variability on the transmissibility function analysis for 
damage detection on a woven composite plate[14]. Their work suggested that the damage detection accuracy based on 
transmissibility function could be improved by identifying specific frequency ranges that are more sensitive to damage 
and immune to sources of uncertainties. Devriendt and Guillaume [15] concluded that arbitrary forces could be used to 
perform the transmissibility-function-based operational modal analysis, as long as the structure is persistently excited in 
the frequency range of interest. Mao and Todd analyzed the uncertainty of the magnitude of transmissibility functions 
under random excitation[16]. The probability density of transmissibility functions are analytically derived and validated 
through Monte Carlo simulation. Finally, Johnson and Adams investigated the explicit formulation of transmissibility 
functions using a three degrees-of-freedom (DOFs) system [17]. Nevertheless, little research has been reported on 
decentralized damage detection using transmissibility function analysis. Furthermore, analytical nature of transmissibility 
functions for damage detection of a chain-like structure with an arbitrary number of DOFs is not available in the literature. 

This study proposes a decentralized structural damage detection procedure. The decentralized procedure only requires 
measurements in one small area at a time, and thus, is ideal for using a limited number of sensors upon a large scale 
structure. Furthermore, this study investigates the nature of the transmissibility functions for decentralized damage 
detection in an analytical manner, using a chain-like multi-DOF spring-mass-damper system. The system used in the 
derivation is lightly coupled since each DOF is only connected with its neighboring DOFs on the chain. Damage sensitivity 
of the transmissibility functions is derived based on a decentralized measurement scheme.  Responses at two neighboring 
DOFs are measured at a time, following the sequence 1 and 2, 2 and 3, etc., to cover the entire structure.  To generate 
response at the two DOFs, external excitation is applied at the latter DOF in the pair. The analytical derivation is then 
validated through both numerical simulations and laboratory experiments. Section 2 of this paper presents an analytical 
derivation for the damage sensitivity of the decentralized/local transmissibility functions, which illustrates the potential of 
using change in local transmissibility functions as damage signatures. Two types of damage scenarios are studied. The 
first scenario considers mass change, and the second scenario considers stiffness loss. Section 3 presents the numerical 
simulation of a 10-DOF spring-mass-damper system that validates the conclusion from the analytical derivation. Section 
4 presents the experimental validation using wireless mobile sensors on a five-story shear-building model. Section 5 
summarizes this paper and discusses future research work. 

 

2. TRANSMISSIBILITY FUNCTION ANALYSIS FOR A MULTI-DOF SPRING-MASS-
DAMPER SYSTEM 

In this section, the local transmissibility function for a multi-DOF spring-mass-damper system is first analytically derived, 
following a decentralized excitation and measurement scheme. The sensitivity of the transfer function for two damage 
scenarios is then studied. The first damage scenario considers mass change, and the second damage scenario considers 
stiffness loss. 

2.1 Transmissibility function for a multi-DOF spring-mass-damper system 

The equations of motion for a multi-DOF spring-mass-damper system can be formulated as:  

( ) ( ) ( ) ( )t t t tMx + Cx + Kx = f   (1) 
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where ( )tx , ( )tx and ( )tx denote the displacement, velocity and acceleration vectors of the system, respectively; f(t) 
denotes the external excitation; M, C, and K are the mass, damping and stiffness matrices, respectively.  For a chain-like 
spring-mass-damper system (Figure 1), the matrices can be expressed as the follows: 
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Here “Diag” denotes a diagonal matrix, and “Symm.” denotes the symmetric part of a matrix. Applying the Laplace 
transform (assuming zero initial condition), the time-domain formulation can be converted to: 

( ) ( ) ( )s s sX = H F  (5) 

where H(s) is known as the frequency response function (FRF) matrix and s is the complex argument. The acceleration 
vector in the complex domain can be expressed as: 

2( ) ( ) ( )s s s sA = H F  (6) 

The transmissibility function Tij(s) between the output DOF i and reference-output DOF j is defined as the ratio of two 
acceleration responses Ai(s) and Aj(s). Let h(s) denote one row of H(s), then 
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Consider the scenario when only one external excitation fk(t) is applied to the k-th DOF of the structure, Eq. (7) can be 
further simplified since the external excitation terms cancel out: 

( )
( )
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(8) 

Thus, the transmissibility function Tij(s) is determined by two entries in the FRF matrix, Hik(s) and Hjk(s). It is known that 
the transfer function matrix H(s) is equal to the inverse of matrix B(s), where  

 
Figure 1. A chain-like multi-DOF spring-mass-damper system 
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Note that matrix B is a symmetric tridiagonal matrix. As a result, according to [18] which provides analytical formulation 
of the inverse of a tridiagonal matrix, the entries of  H(s) can be expressed in a recursive form, where the complex argument 
"(s)" is neglected hereinafter to lighten the notation: 
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The intermediate variables Ui, Xi, Yi are recursively computed based on entries in matrix B(s): 
1
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From Eq. (11), the recursive relationship between Ui and Ui-1can be derived as:  
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Eq. (12)provides the theoretical basis for the damage sensitivity analysis using transmissibility functions in this paper, 
where the interest is on decentralized damage detection using local excitation and local measurement. We propose to 
consider a decentralized damage detection approach in which acceleration measurements are taken at two neighboring 
DOFs at a time, following the sequence 1 and 2, 2 and 3, …, (N-1) and N. For each measurement at two neighboring DOFs, 
an external excitation is applied at the latter DOF in the pair. For example, the measurement is taken at DOF pair 2-3, 
when the excitation is applied at DOF-3. In this case, according to Eqs. (8) and (10), the transmissibility functions between 
each two neighboring DOFs can be expressed as: 
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According to Eq. (11), when the complex argument s is large enough, U1can be simplified as  
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Substituting Eq. (14) into Eq. (12), when s is large enough, U2can be simplified as 
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Similarly, by iteratively applying Eq. (12), the denominator and the numerator of Ui are dominated by the term with the 
highest power of s, and Ui can be approximately expressed as 
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The equation above provides a good approximation if s has a large magnitude, i.e. at a higher frequency range, such that 

2 2
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To use transmissibility functions as damage indicator, the difference between the transmissibility functions of the 
undamaged structure and the damaged structure, iε , is calculated: 

( 1) ( 1)i i i i
D D

i i iT T U Uε + += − = −  (18) 

where the superscript “D” refers to the damaged structure. A damage indicator can be defined as the sum of the absolute 
value of iε  in a certain frequency range of ω: 

( )i i k
k

DI sε= ∑
 

(19) 

where sk = jωk and j is the imaginary unit. 

2.2 Damage scenario I – mass change 

In damage scenario I, suppose that damage occurs at an arbitrary DOF n (as a reminder, the total number of DOFs is 
denoted by capital N), and is emulated with mass mn (undamaged) changed to D

nm (damage). This simple scenario is studied 
first because in laboratory damage detection experiments, a mass change, which affects structural dynamic properties, is 
often used to conveniently emulate a reversible "damage". According to Eq. (9), only one diagonal entry Bnn in B matrix 
will change due to the damage. Let D

nnB  denote the corresponding entry in B matrix with the changed mass. Eq. (12) 
indicates that after the damage, Ui will remain the same for i < n, and will change to Ui

D for i ≥ n. 

Following the local excitation and local measurement scheme (describe before Eq. (13)), the difference in transmissibility 
functions between damaged and undamaged structures, iε , can be studied in three different cases categorized by 
measurement locations (Figure 2). The difference can be further simplified when s is large enough (i.e. when the 
inequalities in Eq. (17) holds). Note the hammer icon shown in the figure is used only to represent the excitation location.  
In practice, the excitation record can be other types of broadband record, because the transmissibility function is 
independent to the excitation spectrum, as shown in Eqs. (7) and (8). 

Case I (a) i <n 

As shown in Figure 2(a) with i < n, acceleration measurements are taken at two neighboring DOFs i and j = i+1, while the 
external excitation is applied at DOF j = i+1. Eq. (12) indicates Ui will remain unchanged after damage, for i < n. According 

 
Figure 2.  Damage scenario I: mass change at DOF n, while measurements are taken at DOFs i and j=i+1. The external 
excitation is applied at DOF i+1: (a) i <n; (b) i = n; (c) i >n 
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to Eq. (18), the transmissibility function difference iε  equals zero in this case, i.e., the mass change at DOF n does not 
cause change in transmissibility function Tij (i < n). 

Case I (b) i = n 

As shown in Figure 2(b), the measurements are taken at two neighboring DOFs i = n and j = n+1, while the external 
excitation is applied at DOF j = n+1. In Eq. (12), Bnn is the only term that changes (to D

nnB ) due to the damage, and Un-

1will remain unchanged after damage. Substituting Eq. (12) into Eq. (18), the transmissibility function difference i nε ε=
can be derived as: 
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= − = − =

++ + +  (20) 

 

Substituting Eq. (14) into the above, when s is large enough (satisfying inequalities in Eq. (17)), the transmissibility 
function difference nε can be simplified by neglecting lower order terms: 
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D
n n n n

n D
n n

c s k m m

m m s
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This means that unlike Case I(a), the mass change at DOF n causes change in transmissibility function Tn(n+1). 

Case I (c) i > n  

As shown in Figure 2(c) with i > n, the measurements are taken at two neighboring DOFs i and j = i+1, while the external 
excitation is applied at DOF j = i+1. In Eq. (12), the B** terms remain unchanged due to damage; only the Ui-1 term changes 
to 1

D
iU − .Substituting Eq. (12) into Eq. (18), the transmissibility function difference iε can be derived as: 
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Substituting Eq. (14) into the above, when s is large enough (satisfying inequalities in Eq. (17)), iε can be simplified as: 

( )( )1 1
12 4  i i i i

i i
i

c s k c s k
m s
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−

+ +
≈  (23) 

According to the assumption in Eq. (17), it is easy to prove that ( )( )2 4
1 1i i i i im s c s k c s k+ +>> + + . As a result, iε << 1iε − . 

This means that when the measurement locations move further away from the mass change, the transmissibility function 
difference caused by damage reduces at a very fast rate. 

To summarize all three cases with mass change, when transmissibility function Tij is taken at DOFs before the excitation-
measurement reaches damage location, as in Case I(a) with i<n, the function shows no difference between damaged and 
undamaged structures, i.e. iε = 0. When the transmissibility function Tij is taken at locations spatially past damage, as in 
Case I(c) with i>n, the difference between transmissibility functions of damaged and undamaged structures, iε , is not zero 
but reduces very fast.  Furthermore, when the transmissibility function Tij is taken at DOFs after the excitation-
measurement moves past damage location, as in Case I(b) with i = n, the difference between transmissibility functions of 
damaged and undamaged structures, nε , is significantly larger than the previous two cases. As a result, the damage 
indicator, DIi, as defined in Eq. (19) and calculated for a relatively high frequency range, should be the largest when the 
excitation and measurements are next to the damage (Figure 2(b)). This means the damage indicator not only detects 
damage, but also accurately locates damage. 
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2.3 Damage scenario II – stiffness loss 

In damage scenario II, suppose that damage occurs between DOFs n-1 and n, as the stiffness reduction from kn to D
nk . 

According to Eq. (9), only entries B(n-1)(n-1), B(n-1)n , Bn(n-1) and Bnn in B matrix will change due to the damage; all other 
entries remain unchanged. Let ( )( )1 1

D
n nB − − , ( 1)

D
n nB − , ( 1)

D
n nB − and D

nnB  denote the corresponding entries in B matrix with stiffness 
loss between DOFs n-1 and n. Eq. (12) again indicates that after the damage, Ui will remain the same for i<n-1, and will 
change to Ui

D for i ≥ n-1. 

The difference in transmissibility functions, iε , can be studied into four different cases by measurement locations (Figure 
3), and further simplified when s is large enough (i.e. when the inequalities in Eq. (17) holds).  

Case II (a) i <n-1  

As shown in Figure 3(a) with i < n-1, acceleration measurements are taken at two neighboring DOFs i and j = i+1, while 
the external excitation is applied at DOF j = i+1. Eq. (12) indicates Ui will remain unchanged after damage, for i < n-1. 
From Eq. (18), the transmissibility function difference iε  equals zero in this case, i.e. the stiffness loss between DOFs n-
1 and n does not cause change to transmissibility function Tij (i < n). 

Case II (b) i = n-1   

As shown in Figure 3(b) with i = n-1, acceleration measurements are taken at two neighboring DOFs n-1 and n, while the 
external excitation is applied at DOF n. In Eq. (12), B(n-1)(n-1) and B(n-1)n  are the only terms that change (to ( )( )1 1

D
n nB − −  and

( 1)
D
n nB − , respectively) due to the damage, and Un-2 will remain unchanged after damage. Substituting Eq. (12) into Eq. (18), 

the transmissibility function difference 1i nε ε −= can be derived as: 
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D
n n n nD
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n n n n n n n n n n n n n n n
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B B
U U
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B B B B B B B U
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− − −

− − − − −− − − − −
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− − − − − −

− −
= − = −
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− + −
=

+ ( ))( 1) ( 1)( 2) 2n n n nB U− − − −+
 

(24) 

Substituting Eq. (14) into the above and neglecting lower order terms, when s is large enough, 1nε − can be simplified as: 

 
Figure 3. Damage scenario II: stiffness loss between DOFs n-1 and n, while measurements are taken at DOFs i and j = 
i+1. An external excitation is applied at DOF i+1: (a) i <n-1; (b) i = n-1; (c) i = n; (d) i >n 
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1 2
1

( )D
n n

n
n

k k
m s

ε −
−

−
≈

 
(25) 

This means that unlike Case II(a), the stiffness change between DOFs n-1 and n in Case II(b) causes change in 
transmissibility function T(n-1)n. 

Case II (c) i = n  

As shown in Figure 3(c) with i = n, acceleration measurements are taken at two neighboring DOFs n and n+1, while the 
external excitation is applied at DOF n+1. In Eq. (12), Bnn, Bn(n-1) and Un-1 are the terms that change (to D

nnB , ( 1)
D
n nB − , and 

1
D
nU − respectively) due to the damage. Substituting Eq. (12) into Eq. (18), the transmissibility function difference i nε ε=

can be derived as: 

( )
( )( )

( 1) ( 1) 1 ( 1) 1( 1) ( 1)

( 1) 1( 1) 1 ( 1) 1 ( 1) 1

D D D
n n nn nn n n n n n nn n n nD

n n n D D D D D D
nn n n nnn n n n nn n n n nn n n n

B B B B U B UB B
U U

B B UB B U B B U B B U
ε + − − − −+ +

− −− − − − − −

− + −− −
= − = − =

++ + +  (26) 

Substituting Eq. (14) into the above and neglecting lower order terms, when s is large enough, nε can be simplified as: 

( )( )1 1

2 4

D
n n n n

n
n

c s k k k

m s
ε + +− + −
≈  (27) 

Comparing Eqs. (25) and (27), the relationship of transmissibility function differences for Case II (b) and Case II (c) can 
be derived as 

( )1 1 1
12 2

n n n
n n

n

c s k m
m s

ε ε+ + −
−

− +
≈  (28) 

Besides the assumption in Eq. (17), if we assume that the system has relatively uniform mass distribution, it is easy to 
prove that nε << 1nε − .  This means that compared with Case II(b) involving  1nε − , i.e. change in transmissibility function 
T(n-1)n , Case II(c) observes less change in transfer function Tn(n+1) when s is large enough. 

Case II (d) i > n  

As shown in Figure 3(d), acceleration measurements are taken at two neighboring DOFs i and j = i+1, while the external 
excitation is applied at DOF j = i+1 (i > n). In Eq. (12), the B** terms remain unchanged due to damage, and only the Ui-1 
term changes to 1

D
iU − .This situation is the same as in Case I (c) with mass change. The transmissibility function difference 

iε can be derived and simplified to be the same as in Eqs. (22) and (23) (and thus, not repeated here). As a result, this also 
means that when the measurement locations move further away from the stiffness change, the transmissibility function 
difference caused by damage reduces at a very fast rate. 

To summarize all four cases with stiffness change, when transmissibility function Tij is taken at DOFs before the excitation-
measurement reaches damage location, as in Case II(a) with i < n-1, the function shows no difference between damaged 
and undamaged structures, i.e. iε = 0. When the transmissibility function Tij is taken at DOFs after the excitation-
measurement moves past damage location, as in Case II(d) with i>n, the difference between transmissibility functions of 
damaged and undamaged structures, iε , is not zero but reduces very fast.  Furthermore, when the transmissibility function 
Tij is taken right next to the damage, as in Case II(b) with i = n-1 and Case II(c) with i = n, the difference between 
transmissibility functions of damaged and undamaged structures is significantly larger than the previous two cases.  Among 
Case II(b) and Case II(c) shown by Equation (28), the former gives larger difference between transmissibility functions of 
damaged and undamaged structures, i.e. 1nε − >> nε  at higher-frequency domain (s = jω has a large magnitude).  Overall, 
the damage indicator, DIi, as defined in Eq. (19) and calculated at a relatively high frequency range, should be the largest 
when the excitation and measurement are next to the damage.  This means for scenarios with stiffness change, the damage 
indicator can also accurately locate the damage. 
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3. NUMERICAL SIMULATION 
To validate the analytical studies in Section 2, a 10-DOF spring-mass-damper model is simulated. Table 1 summarizes the 
model properties of the undamaged 10-DOF spring-mass-damper model. To obtaining transmissibility functions at 
neighboring DOFs, the decentralized local excitation and measurement scheme described in Section 2 is strictly followed. 
Acceleration measurements are taken sequentially at pairs of DOFs (1-2, 2-3…, 9-10), while for each pair of 
measurements, an ideal impact excitation is applied at the larger DOF number. For example, acceleration measurements 
are taken at the 2nd and 3rd DOFs, when the excitation is applied at the 3rd DOF. The sampling rate is set to 1,000 Hz, and 
each measurement duration is set to 50 seconds. Using data from the undamaged structures, transmissibility functions 
Ti(i+1) (i = 1, ..., 9) are calculated. 

3.1 Damage scenario I –mass change 

In scenario I, damage is emulated by introducing mass increase at the 6th DOF by 10%. Same as the measurement scheme 
of the undamaged structure, for each pair of DOFs, an ideal impact is applied at the larger DOF, and acceleration records 
are sequentially obtained. The transmissibility functions D

12T , D
23T , …, D

9 10T −  for the damaged structure are calculated. 
Figure 4 presents the magnitude of the transmissibility functions of both the undamaged and damaged structures. For 
calculating the damage index in Eq. (19), the frequency range should be selected as high as possible in order to better 
satisfy inequalities in Eq. (17).  However, in practice, the feasibility of selecting a higher frequency range is limited by 
many factors, such as excitation bandwidth, signal-to-noise ratio, capability of data acquisition hardware, etc. When 
selecting the appropriate frequency range, it is recommended to first verify the inequalities in Eq. (17) using estimated 
values of the structural parameters.  In addition, for reliability, it is recommended to exclude frequency points close to 
peaks and valleys of transmissibility functions, because the transmissibility values at these points are from divisions 
involving very large or very small magnitude in the frequency spectra (recall that ( ) ( ) ( )ij i jT s A s A s= ). 

Table 1. Model properties of the 10-DOF spring-mass-damper model 

DOF Mass Stiffness Damping 
1~10 5.4kg (11.9 lbs) 3.44×104 N/m(196.67 lbs/in) 2.98 N•s/m (0.017 lbs•s/in)  

 

   

   

   
Figure 4. Comparison of transmissibility functions between undamaged and damaged structures (mass change) 
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To quantify the difference between transmissibility functions of damaged and undamaged structures, damage indicators 
DIi are calculated based on the transmissibility function difference in frequency range 30~40Hz (Eq. (19)), and shown in 
Figure 5. The largest damage indicator occurs at DOFs 6-7, and other damage indicators are much smaller. This again 
agrees with conclusions from Section 2.2, i.e. the largest damage indicator occurs next to the mass change location. The 
damage indicators at other pairs of measurement locations are much smaller.  

3.2 Damage scenario II – stiffness loss 

In scenario II, damage is introduced by reducing the stiffness between the 6thand 7thDOFsby 10%.  Again, for each pair of 
DOFs, an ideal impact is applied at the larger DOF, and acceleration records are sequentially obtained. The transmissibility 
functions D

12T , D
23T , …, D

9 10T −  for the damaged structure are calculated. Figure 6 presents the magnitude of the 
transmissibility functions of both the undamaged and damaged structures. It is shown at higher frequency range, e.g. 

 
Figure 5. Damage scenario I - the damage indicators of the nine measurement pairs 

   

   

   
Figure 6. Comparison of transmissibility functions between undamaged and damaged structures (stiffness loss) 
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30~40Hz, 67T (of undamaged structure) and D
67T (of damaged structure) have the largest difference. This agrees with the 

conclusions from the analytical formulation in Section 2.3. 
To quantify the difference between transmissibility functions of damaged and undamaged structures, Figure 7 shows 
damage indicators for frequency range 30~40Hz. The largest damage indicator occurs at DOFs 6 and 7, and other damage 
indicators are much smaller. This again demonstrates that the largest damage indicator occurs near the damage location. 

 
Figure 7. Damage scenario II - the damage indicators of the nine measurement location pairs (30~40Hz) 

 

4. EXPERIMENTAL VALIDATION 
To further validate the analytical studies in Section 2, a five-story shear-building structure is built for simulating a 5-DOF 
spring-mass-damper system. The two types of damage scenarios discussed in Section 2 are studied. The first damage 
scenario considers an additional mass fixed at the second floor, and the second damage scenario considers 20% stiffness 
loss introduced to one column between the 2nd and 3rd floors. 

4.1 Testbed structure 

Figure 8 shows the five-story shear-building laboratory structure. The columns are 
steel and the floors are aluminum. The dimension of each floor is identical: 0.41m 
(16 in.) long, 0.305m (12 in.) wide and 0.013m (0.5 in.) thick. The two columns have 
the same rectangular section, 0.15m × 0.002m (6 in. ×0.08 in.).  The total height of 
the building is 1.524m (60 in.), with 0.305m (12 in.) per story. Each floor is 
connected with the columns through rigid constraints. Fixed boundary conditions are 
applied at the base of the each column. This five-story shear-building structure is 
equivalent to a 5 DOF spring-mass-damper system, because the floor stiffness is 
much larger than the stiffness of the columns.  

Magnet-wheeled mobile sensing nodes (MSNs), which are capable of moving on the 
steel structure as well as attaching/detaching an accelerometer (Silicon Designs 
2260-010) onto/from structural surface, are used in the experiments. The design and 
implementation of the mobile sensor can be found in [19-21]. To follow the 
measurement scheme described in Section2, two MSNs are adopted to sequentially 
take measurement at each pair of floors, i.e. 1-2, 2-3, 3-4, and 4-5, as shown in Figure 
9. In the experiments, when the two MSNs arrive at one pair of measurement 
locations, the accelerometer is attached onto the structural surface; then a hammer 
impact is manually applied at the higher one of the location pair to excite the 
structure for acceleration measurement. After the measurement, these two MSNs 
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Figure 8.  A five-story shear-

building structure 
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detach accelerometers from structural surface, and move to next pair of measurement locations. In order to reduce the 
effect of experimental uncertainties, measurement at each location pair is repeatedly taken for 10 times. The sampling rate 
for the acceleration measurement is set as 1,000 Hz. 

 
(a) Config.1                               (b) Config.2                           (c) Config.3                             (d) Config. 4 

Figure 9. Test configurations with MSNs 

 
       (a)                                                                          (b) 

Figure 10. Example acceleration time histories when the hammer impact is applied at the 3rd floor: (a) acceleration at the 
2nd floor; (b) acceleration at the 3rd floor 

 
                                                         (a)                                                                               (b) 

Figure 11. Example acceleration spectra when the hammer impact is applied at the 3rd floor: (a) acceleration spectra at 
the 2nd floor; (b) acceleration spectra at the 3rd floor 
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Figure 10 plots the example acceleration data at the 2nd and 3rd floors when the hammer impact is applied at the 3rd floor 
of the undamaged structure. Figure 11 shows the magnitude of the two frequency spectra, i.e. the discrete Fourier transform 
(DFT) results of the acceleration time history. According to the definition (Eq. (7)), transmissibility function T23 is 
calculated as the ratio between the two frequency spectra, as shown in Figure 12.  

 
Figure 12. Transmissibility function T23 calculated using the example acceleration data 

4.2 Damage scenario I – additional mass 

In damage scenario I, a mass block of 500g (1.1 lbs) is attached on the 2nd floor (Figure 13). In contrast, the weight of each 
floor is about 5.025kg (11.08lbs). With the mass block attached, acceleration measurements follow the same scheme for 
undamaged structure.  

After obtaining all the acceleration records, the transmissibility functions for the damaged structure are calculated. Figure 
14 presents the magnitude of the averaged transmissibility function of both the undamaged and damaged structures. At 
higher frequency range, e.g. 30~40Hz, |T23| (of undamaged structure) and 23

DT  (of damaged structure) have the largest 
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Figure 13. Damage scenario I – A 500g additional mass is attached on the 2nd floor 

 
Figure 14. Comparison of averaged transmissibility function between undamaged and damaged (scenario I) structures 
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difference among all location pairs. This trend agrees with the conclusion from previous analytical derivation and 
numerical simulation. Figure 15 shows damage indicators for frequency range 30~40Hz. The largest damage indicator is 
DI2-3, and all other damage indicators are much smaller. The experimental results confirm the effectiveness of the proposed 
decentralized transmissibility approach in locating damage. 

 

4.3 Damage scenario II – stiffness loss 

In damage scenario II, a 20% stiffness loss is introduced to the left column, between the 2nd and 3rd floors (Figure 16), by 
decreasing the section width by 20%. After the stiffness loss, acceleration measurements follow the same schemes. 

 
Figure 15. Damage scenario I - the damage indicators at four floor pairs (30~40Hz) 

 

 

 

 

 
Figure 16. Damage scenario II - 20% stiffness loss is introduced to the section of one column between 2nd and 3rd floors 

 
Figure 17. Comparison of averaged transmissibility function between undamaged and damaged (scenario II) structures 
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Figure 17 presents the magnitude of the averaged transmissibility function of both the undamaged and damaged structures. 
At higher frequency range, e.g. 30~40Hz, |T23| (of undamaged structure) and 23

DT (of damaged structure) have the largest 
difference. This trend also agrees with the conclusions from two previous sections. The damage indicators are calculated 
based on the transmissibility function difference in frequency range 30~40Hz (Eq. (19)), and shown in Figure 18. The 
largest damage indicator is DI2-3, and as expected, all other damage indicators are much smaller.  

 
Figure 18. Damage scenario II - the damage indicators at four floor pairs 

 

5. SUMMARY AND DISCUSSION 
This study investigates the analytical nature of local transmissibility functions for decentralized damage detection, based 
on a chain-like multi-DOF spring-mass-damper system. Two damage scenarios are studied. The first damage scenario 
considers mass change, and the second damage scenario considers stiffness loss. Analytical derivations show that the 
difference in transmissibility functions between undamaged and damaged structures is sensitive to both damage scenarios 
and the largest damage indicator should occur near a damage location. The analytical derivation is validated by numerical 
simulations and laboratory experiments. Damage identification results in both simulations and experiments agree with the 
conclusion from the theoretical analysis. 

The damage sensitivities of transmissibility functions have been studied on a lumped mass model in this research, using 
inversion of a tri-diagonal matrix. Future studies are needed for more general 2D and 3D structural models, where inversion 
formulation of block-diagonal matrices needs to be utilized. In addition to damage detection, future studies can also be 
extended to damage quantification of “hot-spot” areas, in order to facilitate structural condition assessment and retrofitting 
decisions. Furthermore, a mobile excitation node can also be developed to apply small-magnitude impacts, so that the 
decentralized measurement scheme can be automatically conducted. 
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