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ABSTRACT  

In this work, a slotted patch antenna is employed as a wireless sensor for monitoring structural strain and fatigue crack. 

Using antenna miniaturization techniques to increase the current path length, the footprint of the slotted patch antenna 

can be reduced to one quarter of a previously presented folded patch antenna. Electromagnetic simulations show that the 

antenna resonance frequency varies when the antenna is under strain. The resonance frequency variation can be 
wirelessly interrogated and recorded by a radiofrequency identification (RFID) reader, and can be used to derive 

strain/deformation. The slotted patch antenna sensor is entirely passive (battery-free), by exploiting an inexpensive off-

the-shelf RFID chip that receives power from the wireless interrogation by the reader.  

Keywords:  strain sensor, wireless passive sensor, slotted patch antenna, RFID. 

 

1. INTRODUCTION  

In order to monitor the integrity of engineering structures, numerous structural health monitoring (SHM) technologies 
have been developed over the past few decades [1]. To evaluate structural conditions, a myriad of structural responses 

can be measured. Among various measurands, strain is one of the most important indicators of structural health. Many 

types of sensors can be used to measure strain,  such as metal foil strain gages, piezoelectric strain sensors, and fiber 

optic sensors [2]. Although performance of these strain sensors had been proved, many require lengthy cables and are 

inconvenient for field application on large-scale structures.  In recent years, wireless strain sensing systems have been 

developed to reduce installation time and cost. However, most wireless sensing devices require an analog-to-digital 

converter for signal digitization, a microprocessor for on-board processing, a wireless radio for data transmission, and 

external batteries for power [3-6]. Although batteries could be recharged by energy harvesting, most batteries have a 

rather limited life span and may cause environmental concerns. 

In our previous work, a folded patch antenna was designed as a passive wireless strain sensor [7].  A low-cost RFID 

(radiofrequency identification) chip is integrated with the folded patch antenna to constitute a passive antenna sensor. 
The interrogation radiofrequency (RF) wave emitted by a reader provides operation power for the RFID chip. Once the 

RFID chip is activated by an interrogation signal, the chip sends a modulated RF signal back to the reader through the 

folded patch antenna. The folded patch antenna sensor was designed using Rogers RT/duroid® 5880, a glass microfiber-

reinforced poly-tetra-fluoro-ethylene (PTFE) composite, as the substrate material. The folded patch antenna enables 50% 

footprint reduction when compared with a regular patch antenna. Nevertheless, due to the low operation frequency of the 

sensor at 900 MHz, the dimension of the  RFID folded patch antenna sensor are still relatively large, i.e. 61mm×69mm 

[7].  

In this work, a slotted patch antenna is designed to further reduce the sensor footprint. Slots introduced into the antenna 

can detour the surface current in order to generate longer travel path for the current. The footprint of the slotted patch 

antenna (36mm×38mm) is reduced to one quarter of the previously presented folded patch antenna sensor [8]. A 



 

 
 

 

commercial software package, Ansoft HFSS, is used to verify strain sensing in the numerical simulation. The rest of this 

paper is organized as follows. Section 2 reviews the wireless strain sensing mechanism of the antenna sensor. Section 3 

presents the design concept of the slotted patch antenna. Section 4 demonstrates simulated strain sensing performance of 

the slotted patch antenna. Finally, the paper is concluded with a summary and discussion. 

 

2. STRAIN SENSING MECHANISM  

The wireless strain sensing system is based on passive RFID technology. Section 2.1 reviews components of the RFID 

system adopted in this research. Section 2.2 describes strain measurement technique through the RFID interrogation. 

2.1 RFID antenna sensor and reader 

Fig. 1 shows the conceptual illustration of RFID communication between a reader and a sensor. The reader emits an 

interrogation electromagnetic wave to the sensor, which includes an antenna for data transmission and an RFID chip for 

signal modulation. The RFID chip adopted in this research is the SL3ICS1002 chip model manufactured by NXP 

semiconductor. If the power received by the sensor-side antenna is higher than the turn-on power of the RFID chip, the 
chip is activated and uses the power from the reader to send a modulated signal back to reader. The RFID chip on the 

sensor requires a minimum power to turn on, which is defined as the threshold power. A Tagformance Lite reader unit [9] 

from Voyantic Ltd. is adopted as the RFID reader. Interrogation power threshold measurement can be achieved by the 

reader.  To identify interrogation power threshold at each frequency point, the reader tunes the interrogation power until 

the power is just enough to activate the RFID chip.  The interrogation power threshold versus frequency curve reaches 

its minimum point at antenna resonance frequency.  Once the antenna sensor is deformed due to applied strain, the 

antenna resonance frequency changes correspondingly. Therefore, strain sensing is achieved through the relationship 

between antenna resonance frequency and strain on the structure.  

2.2 Relationship between strain and resonance frequency of the antenna sensor 

Once an antenna sensor is bonded on a structural surface, the sensor deforms together with the structure. As a result, the 

antenna length changes with structural strain. Eq. (1) shows that resonance frequency of a regular patch antenna (without 

folding), Patch

0
f , is related to antenna length [10]:   
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where c is the speed of the light, L is the physical length of the copper cladding on the antenna,  
reff
  is the effective 

 

Fig. 1. Conceptual illustration of RFID reader and sensor 
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dielectric constant of the antenna substrate, and L is the additional electrical length corresponding to 
reff
 .  Because the 

width-to-thickness ratio is much smaller than 1, the effective dielectric constant 
reff
 has approximately the same value 

as the dielectric constant 
r
 according to  following Equation [10] : 
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where h and  W are thickness and width in the substrate, respectively. The wave length of the patch antenna is 

determined as: 
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When strain   occurs in the longitudinal direction, the resonance frequency is shifted to: 
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The equation shows that if strain  is small, the resonance frequency shifting is approximately linear to strain. This 

linear relationship indicates that strain can be derived by measuring shift in the antenna resonance frequency. This serves 

as the fundamental strain sensing mechanism of the wireless antenna sensor. Although the width of the antenna is also 

changed according to Poisson’s ratio, the width change does not affect the resonance frequency change. Fig. 2 (a) and (b) 

illustrate relationship between sensor deformation and antenna resonance frequency. When strain ε is positive, the 

resonance frequency f decreases. On the other hand, if strain ε is negative, the resonance frequency f increases. 

 

3. DESIGN OF A SLOTTED PATCH ANTENNA SENSOR  

Although the RFID standard allows for a broad frequency range (840~960MHz) in America, Europe, and Asia, 880MHz 

is within the cell phone frequency band in the U.S. Therefore, the resonance frequency of the folded patch antenna is 

shifted outside the cell phone frequency band to around 915 MHz, so that issues with environmental noise are avoided. 

In the microstrip patch antenna design, the effective electrical length of a patch antenna is 2 / .  Resonance frequency of 

 
(a) Antenna deformation in the longitudinal direction (b) Illustration of interrogation power threshold measurement 

Fig. 2. Conceptual illustration of relationship between sensor deformation and resonance frequency change 

 

Frequency

In
te

rr
o

g
a
ti
o

n
  p

o
w

e
r 

th
re

s
h

o
ld

f0f

No strain

Strain + ε

f

P

W

L

Load P

W(1- γε)

L(1+ε)

No strain Strain + ε

P



 

 
 

 

the patch antenna is dependent on the surface current path as shown in Fig. 3.  According to Eq. (3), the required half 

wave length on Rogers 5880 substrate is 110 mm at 915MHz resonance frequency.  In other words, to maintain a 

resonance frequency at 915MHz, length of the entire current path needs to keep at 110mm. As a result, current detouring 

on the RFID antenna sensor helps to reduce sensor size while maintaining operation frequency at 915MHz.  

Our previous RFID antenna sensor design achieves current detouring through a folded patch configuration. In this design, 

0.787mm-thick Rogers RT/duroid®5880 PTFE material is used as the substrate. The material has a low dielectric 
constant and a low loss tangent, which improve signal-to-noise ratio and increase wireless interrogation distance. The 

previous folded patch antenna has vias which are connected between a top copper cladding and a bottom copper ground 

plane (Fig.4). Vias change the boundary conditions at the end of the metal patch. This prevents the current from going to 

zero, and thus increases the electrical length travelled by the current. The folded patch configuration reduces the 

footprint from a regular patch antenna by half, to 61mm×69mm (Fig. 5(a)).  The initial antenna resonance frequency, 
Folded

0
f , and the shifted resonance frequency under strain,

 

Foldedf , are estimated as  
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Fig. 3. Illustration of the surface current vector in the patch antenna sensor 

 

 

(a ) Top skewed view (b)   Bottom skewed view 

Fig.4. Illustrate of the current surface vector in the folded patch antenna sensor 
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Although the folded patch antenna sensor shows good performance for wireless strain sensing, the sensor size is still 

relatively large.  For further size reduction, a slotted patch configuration is investigated (Fig. 5(b)). Dimension of the 
antenna sensor is reduced to 36mm × 38mm. As shown in Fig. 6(a), the slots in the copper cladding generate a detoured 

surface current path. For the slotted patch antenna sensor, the initial resonance frequency and the shifted resonance 

frequency under strain can be estimated as: 
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(a)  Folded patch antenna (b) Slotted patch antenna 

Fig. 5. Footprint comparison of the folded patch antenna sensor and slotted patch antenna sensor 

 

 

 

 

(a) Top skewed view (b) Bottom skewed view 

Fig. 6. Illustration of the slotted patch antenna 
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Fig. 6 (b) shows the perspective view of the slotted patch antenna. An RFID chip is located in the middle of the sensor 

for RFID signal modulation. Vias are also adopted to connect top copper cladding with bottom copper ground plane. 

 

4. STRAIN SENSING PERFORMANCE OF SLOTTED PATCH ANTENNA SENSOR 

Electromagnetic simulation is conducted using a commercial software package, Ansoft HFSS, to verify the strain 

sensing performance of the slotted patch antenna. Section 4.1 describes the simulation model and setup. Section 4.2 

reviews electromagnetic radiation theory and illustrates the simulated surface current density vector in the slotted patch 

antenna sensor. Section 4.3 presents simulated strain sensing performance of the slotted patch antenna. 

4.1 Simulation model and setup 

Fig. 7 illustrates the simulation model of the slotted patch antenna sensor.  The cubic air box is the domain of the 

electromagnetic simulation. The outside layer of the air box is assigned as a perfectly matched layer (PML) for 

absorbing waves coming from the antenna sensor, so that no wave reflects back to the sensor from the PML.  The RFID 

chip is modeled as a lumped port with an impedance of 13.3-j122 , which has the same electrical impedance as the 
RFID chip model made by NXP Semiconductors. Perfect electrical conductor (PEC) is used to model the copper 

material, in order to reduce simulation time.  The simulation adopts an adaptive mesh method, which increases mesh 

density until the result converges in a pre-defined tolerance. In current simulation, the model contains 42,844 tetrahedral 

elements. The frequency sweep range is from 905 MHz to 920MHz, with 0.01 MHz step size. 

4.2 Electromagnetic radiation  

Fig. 8 illustrates surface current density vectors, which as expected, show a detoured current path along the slot edge. 
The length of current path is approximately four times as entire antenna length. The resonance frequency of the patch 

antenna is mainly dependent on the electrical wave length. Therefore, the size of the slotted patch antenna is reduced to a 

quarter of the previous folded patch antenna design, while the resonance frequency is still around 915MHz.  

 

Fig. 7. Simulation model of the slotted patched antenna sensor in Ansoft HFSS 

 



 

 
 

 

4.3 Strain sensing performance 

To validate the stain sensing performance through simulation, a slotted patch antenna sensor is deformed from zero 

strain to 3,000 µε. In this study, the sensor dimension is simply scaled according to applied strain. In other words, 

dimensions along the length of the antenna sensor are increased according to strain, while the dimensions along the 

width and the thickness are proportionally decreased by Poisson’s ratio. Adaptive mesh method is completed after 

seventeen iterations. Scattering parameter (S11) is an important indicator of antenna radiation efficiency at the certain 

frequency ω.  The S11 parameter is calculated as [11]:  
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where 
iV and 

rV  are equivalent incident and reflected voltages, respectively looking from the lumped port (modeling 

RFID chip) into the antenna. S11 is a result of impedance matching between the lumped port and the antenna. For the 

same incident voltage, a lower reflected voltage means more energy is radiated by antenna, i.e. higher radiation 

efficiency. Therefore, smaller S11 value means better matching and higher antenna efficiency.  Because S11 changes with 

frequency, the corresponding frequency of its minimum value is the resonance frequency of the antenna sensor.  

Fig. 9(a) shows S11 plots at different strain levels. The resonance frequency of the slotted patch antenna reduces as the 

strain increases. For example, at zero strain level, the resonance frequency is 914.81 MHz, while the resonance 

frequency decreases to 912.30 MHz at 2,000 µε. Fig. 9(b) shows linear regression between resonance frequencies and 

corresponding strain levels. The figure shows the coefficient of determination (R2) is 0.9954, which indicates a good 

linearity between resonance frequency and strain. In addition, strain sensitivity is defined as frequency change over 

strain change:  
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where 1f is the initial resonance frequency at strain 1 ; 2f is the resonance frequency at strain 2 .  As shown by linear 

regression in Fig. 9(b), the strain sensitivity is -820 Hz/με, which is lower than theoretical prediction of -915 Hz/με. One 

 

 

Fig. 8. Surface current density vector of the slotted patched antenna sensor simulated in Ansoft HFSS 

 



 

 
 

 

potential reason is that in simulation, strain/deformation in the antenna not only changes antenna length in the 

longitudinal direction, but also changes dimensions of other antenna components (including matching lines, vias, and 

substrate).  While Eq. (6) considers only effect of antenna length change, dimension changes of other components also 

affect antenna impedance matching, and thus, affect S11 curve and resonance frequency.  As a result, these more 

complicated influences to strain sensitivity are not taken into consideration by the simplified theoretical prediction in Eq. 

(6).  

 

5. SUMMARY AND DISCUSSION 

This paper presents a slotted patch antenna sensor design based on wireless passive RFID techniques. In previous 
research, although a folded patch antenna sensor shows good performance for strain and crack sensing, the sensor size is 

relatively large. By implementing minimization techniques, surface current on the slotted patch antenna sensor is 

detoured. The footprint is reduced to a quarter (36mm×38mm) of the folded patch antenna sensor while maintaining the 

same resonance frequency. Strain sensing performance of the slotted patch antenna sensor is proved through numerical 

simulations in the Ansoft HFSS software package. Electromagnetic simulations demonstrate highly linear relationship 

between strain and resonance frequency change. In future work, tensile experiments will be performed to validate the 

strain and crack sensing performance of the slotted patch antenna sensor. 
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(a) S11 parameters under strain transfer (b) Resonance frequency versus strain 

Fig. 9. Strain simulation results of the slotted patched antenna sensor in Ansoft HFSS 
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