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ABSTRACT  

In order to obtain a finite element (FE) model that can more accurately describe structural behaviors, experimental data 
measured from the actual structure can be used to update the FE model. The process is known as FE model updating. In 
this paper, a frequency response function (FRF)-based model updating approach is presented. The approach attempts to 
minimize the difference between analytical and experimental FRFs, while the experimental FRFs are calculated using 
simultaneously measured dynamic excitation and corresponding structural responses. In this study, the FRF-based model 
updating method is validated through laboratory experiments on a four-story shear-frame structure. To obtain the 
experimental FRFs, shake table tests and impact hammer tests are performed. The FRF-based model updating method is 
shown to successfully update the stiffness, mass and damping parameters of the four-story structure, so that the analytical 
and experimental FRFs match well with each other.  
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1. INTRODUCTION  
Although significant improvements have been made in FE modeling during the past few decades, it remains challenging 
to obtain an FE model that can fully represent an actual structure in the field. The inaccuracies in FE models can possibly 
be caused by nominal material property values, improper boundary conditions, difficulties in damping modeling, etc. 
Therefore, to achieve higher simulation accuracy, an initial FE model built according to design drawings needs to be 
updated using field experimental data.  

Over the past few decades, many FE model updating methods have been proposed and practically applied [1]. These 
methods can be broadly classified into two categories: modal-based methods and response-based methods. Modal-based 
model updating methods need to extract modal properties (such as resonance frequencies, mode shapes and damping ratios) 
from experimental data first. These modal properties are then utilized to update the FE model. For example, modal property 
difference approach belongs to the modal-based category. The approach updates model parameter values by minimizing 
the discrepancies between the simulated and experimental modal properties. Brownjohn and Xia proposed a method to 
perform model updating by minimizing the frequency difference between experiments and simulation [2]. Teughels et al. 
extended this method to minimize both mode shape difference and frequency difference and applied the new method on a 
railway bridge [3]. Jaishi and Ren proposed an objective function which contains frequency residual, modal assurance 
criterion (MAC) related function, and modal flexibility residual for model updating [4]. Another representative in modal-
based category is called modal dynamic residual approach, which attempts to update the mass, stiffness and damping 
information by minimizing the modal dynamic residuals from the generalized eigenvalue equation. For example, Abdalla 
et al. proposed an optimization problem involving modal dynamic residual constraints on the unknown stiffness matrix 
[5]. Zhu et al. compared the modal property difference approach and dynamic residual approach on a lumped mass-spring 
model [6]. However, all these modal-based methods need to first perform modal analysis to experimental data. This may 
add uncertainties and errors during the model updating process. Another difficulty is that, in most cases, only the first few 
natural frequencies and mode shapes of a structure can be extracted through modal analysis. As a result, the modal property 
data available for model updating are limited.  

In the response-based category, vibration response time history-based method is one representative. Agbabian et al. first 
proposed to use vibration time history data for structural damage detection of a 3-DOF numerical model [7]. Cattarius and 
Inman utilized the beat phenomena to find changes in vibration response to detect the damage of a cantilevered aluminum 
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plate [8]. Although time domain methods have a lot of advantages, they require significant computational efforts. Another 
representative in response-based category is the FRF-based model updating method. The FRF-based method requires to 
use experimental FRFs, which can be easily calculated through structural response data and excitation data. Thus, the FRF-
based method provides the convenience of not requiring the extraction of modal properties. In addition, an experiment can 
provide abundant data in a large frequency range, as opposed to modal information which is limited to only a few identified 
frequencies and modes.  

Among FRF-based approaches, Lin and Ewins presented an analytical sensitivity-based FRF updating method, which 
avoids the inverse of the system dynamic stiffness matrix [9]. Later, Lin and Zhu extended this method to update the 
general damped structural model [10]. According to Lin and Ewins’ work, Arora et al. proposed a two-step procedure to 
update the mass and stiffness matrices first, and then identify damping [11]. Pradhan and Modak modified the sensitivity-
based FRF method by only using the real-valued normal FRF matrix (for a corresponding undamped system) in the model 
updating [12]. Nevertheless, this analytical sensitivity-based FRF method has a main drawback of requiring complete 
measurements at all DOFs. This is unrealistic in practice, so expansion of the measured FRF or reduction of system 
matrices is required, which will add inaccuracies to the model updating process. To overcome this limitation, Sipple and 
Sanayei proposed a numerical sensitivity-based FRF method which uses the modal-decomposed form of analytical FRF 
in FE model updating [13]. The proposed expression of FRF is in scalar form, so this method does not need any expansion 
of the experiment FRF data or reduction of system matrices. 

This research follows the numerical sensitivity-based FRF method that attempts to minimize the difference between 
analytical and experimental FRFs [13]. In comparison with the previous work that’s equivalent to Caughey damping 
assumption, the FRF formulation for a simpler Rayleigh damping assumption is provided here.  In addition, besides the 
default scenario where excitation is applied at only one degree-of-freedom (DOF) at a time, the FRF formulation is derived 
for the scenario where ground/earthquake excitation occurs to a shear-frame building structure (which is equivalent to 
applying excitation simultaneously at all DOFs).  To validate these formulations towards FRF-based model updating, 
laboratory experiments are performed on a four-story aluminum structure. The rest of the paper is organized as follows. 
Section 2 presents the formulations of FRFs with Rayleigh and Caughey damping assumptions, for both of the excitation 
scenarios. Section 3 describes the model updating process that minimizes the difference between analytical and 
experimental FRFs. Section 4 describes the hammer tests and shake table test on a four-story shear-frame aluminum 
structure for validating the performances of the proposed formulations for FRF-based model updating.  Finally, 
conclusions and future work are provided in section 5.  

 

2. FORMULATIONS OF THE FREQUENCY RESPONSE FUNCTION 
2.1 Analytical form of the frequency response function for excitation at one DOF 

The presented formulations for one-DOF excitation is based on the derivation in Sipple and Sanayei’s work, which avoids 
the use of analytical sensitivity [13]. The FRF for single-DOF excitation can be experimentally obtained using excitations 
like hammer impact. Analytical natural frequency, mode shape, and damping ratio for every mode are needed for the 
updating, which can be easily obtained from the FE model.  

The derivation begins from the basic form of the frequency response function. For an n-DOF structure with viscous 
damping, the FRF for displacement can be written as: 

( ) 12( ) + + jω ω ω
−

= −H M K C  (1) 

The FRF in Eq. (1) is defined as receptance. Here n n×∈M   is the mass matrix; n n×∈K   is the stiffness matrix; 
n n×∈C   is the damping matrix; j 1= − is the imaginary unit; ω is a (angular) frequency point. 

When assuming proportional damping, the damped system has real-valued modes as the corresponding undamped system. 
Rayleigh damping model is one of the most widely used proportional damping model. 

0 1a a= +C M K  (2) 
where a0 is the damping coefficient related to mass matrix and a1 is the damping coefficient related to stiffness matrix. 
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Substituting Eq. (2) into Eq. (1), we get 

( ) ( ) ( )
1

2
0 1j + 1 ja aω ω ω ω

−
 = − + +
 H M K  (3) 

Then take the inverse of both sides of Eq. (3) and pre-multiply and post-multiply both sides by TΦ and Φ , respectively, 
where Φ  is the mass-normalized mode shape matrix, i.e., T =Φ MΦ I , T 2=Φ KΦ Ω . 

( ) ( ) ( )1T T 2
0 1j + 1 ja aω ω ω ω−  = − + + Φ H Φ Φ M K Φ  (4) 

where Ω  is a diagonal matrix containing the undamped natural frequencies. 

After simplifying the equation, using modal orthogonality, Eq.(4) can be written as: 

( ) ( ) ( )1T 2 2
0 1j + 1 ja aω ω ω ω− = − + +Φ H Φ I Ω  (5) 

In order to eliminate the inverse of ( )ωH , first pre-multiply each side of the equation by T−Φ and post-multiply each side 

by 1−Φ , and then take the inverse of Eq. (5): 

( ) ( ) ( )2 2 T
0 1j + 1 ja aω ω ω ω = − + +

 
H Φ I Ω Φ  (6) 

Further decompose Eq.(6) into the summation of mode shapes at every DOF: 

( ) ( )
, ,

, 2 2 2
1 , 0 1 ,j

m
r i e i

r e
i n i n i

H
a a

φ φ
ω

ω ω ω ω=

=
− + + +

∑  (7) 

In Eq.(7), m is the total number of modes; the subscripts r and e represent the response DOF and excitation DOF, 
respectively; ,r iφ  and ,e iφ are the r-th and e-th entry of the i-th mass-normalized mode shape vector φi, respectively; ,n iω  
is the undamped natural frequency for i-th mode. 

As a general from of proportional damping, Caughey damping model is also utilized here for deriving the FRF. Caughey 
damping is expressed as a series expression relate to mass and stiffness matrices [14].  

1
1

0

m l
l

l

a
−

−

=

 =  ∑C M M K  (8) 

where ( )0,..., 1la l m= −  are constants associated with mass and stiffness matrices. The damping ratio for the i-th mode is 
thus: 

1
2 1
,

0

1
2

m
l

i l n i
l

aξ ω
−

−

=

= ∑  (9) 

Following the previous derivation, it is easy to get the modal-decomposed form of FRF for Caughey damping assumption.  

( ) , ,
, 2 2

, ,1 2 j

m
r i e i

r e
i n i n ii

H
φ φ

ω
ω ξ ω ω ω=

=
− + +∑  (10) 

Besides the (displacement) receptance FRF ( ),r eH ω , mobility ( ),r eY ω  is defined as the FRF for excitation at DOF-e and 

the corresponding velocity response at DOF-r. Accelerance ( ),r eA ω  is defined as the FRF for the excitation at DOF-e and 
the corresponding acceleration response at DOF-r. Both the mobility function and the accelerance function can be easily 
calculated from the receptance function. 

( ) ( ), ,jr e r eY Hω ω ω=  (11)  

( ) ( )2
, ,r e r eA Hω ω ω= −  (12)  
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2.2 Analytical form of the frequency response function for ground excitation  

The experimental study in this research includes ground/earthquake excitation to a 4-story laboratory structure. The 
analytical form of the FRF with ground excitation is extended from the previous one-DOF excitation case. For an n-DOF 
shear-frame structure, the response at DOF-r caused by ground acceleration can be taken as the summation of responses 
at DOF-r caused by the equivalent earthquake force at every DOF [15]. Xr,e (ω) represents displacement response at DOF-
r due to the excitation at DOF-e in frequency domain, me is the lumped mass at DOF-e. 

( ) ( ) ( ) ( ) ( ) ( ), , , ground
1 1 1

n n n

r r e r e e r e e
e e e

X X H F H A mω ω ω ω ω ω
= = =

= = = −∑ ∑ ∑  (13) 

The receptance for response at location r due to ground excitation can be derive from Eq. (13): 

( ) ( )
( ) ( ),ground ,

ground 1

n
r

r r e e
e

X
H H m

A
ω

ω ω
ω =

= = −∑  (14) 

 For Rayleigh damping case, the analytical form of receptance for ground acceleration can be written as: 

( ) ( )
, ,

1
,ground 2 2 2
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r i e e im
e
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=
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=
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∑
∑  

(15) 

For Caughey damping case, the analytical form of receptance for ground acceleration can be written as: 

( )
, ,

1
,ground 2 2

, ,1 2 j
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r i e e im
e

r
i n i n ii
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φ φ
ω

ω ξ ω ω ω
=

=

−

=
− + +

∑
∑  

(16) 

 

3. FREQUENCY RESPONSE FUNCTION-BASED MODEL UPDATING METHOD 
3.1 Frequency response function form used in model updating method 

From the FRF formulations in Eq. (7), (10), (15), (16), it is easy to find that the FRF value for any damped system is a 
complex number. In the model updating process, the magnitude of FRF, ( ),r eH ω  and ( ),groundrH ω  are often 
recommended for adoption [13]. 

( ) ( ), ,r e r eH Hω ω=   

( ) ( ),ground ,groundr rH Hω ω=  
(17) 

The magnitude of each DOF value is one scalar. Whenever practically possible, it is preferred to obtain FRFs from multiple 
response DOFs, due to multiple excitation DOFs, and at a great number of interested frequency points. In order to use all 
these FRF data for model updating, long vectors are formulated. 

For one-DOF excitation, 

T
T T T T

, , , ,1 1( ), , ( ) , , ( ), , ( )a b a b p q p qr e r e r e r en nω ω
ω ω ω ω    =         

H H H H H    (18) 

For ground excitation, 

T
T T T T

,ground ,ground ,ground ,ground( ), , ( ) , , ( ), , ( )a a p pr r r rn nω ω
ω ω ω ω1 1

    =         
H H H H H    (19) 

The subscripts ra, rp represent different response DOFs and eb, eq represent different excitation DOFs. The excitation-
response index pairs should include all scenarios for which experimental testing data is available. In addition, ωi (i =1,…, 
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nω ) is a frequency point, an nω is the total number of available frequency points. The selected frequency points can affect 
the updating results, so these points need to be carefully chosen based on experimental FRF plots. The selected regions of 
FRF data cannot be susceptible to sensor noise. Half-power bandwidth is recommended in this paper to choose the 
frequency points around every peak in the FRF plot, which corresponds to every obvious resonance frequency in the plot. 

The model updating approach in this paper attempts to minimize the difference between analytical and experimental FRFs. 
We use HE to denote the long experimental FRF vector, and HA for the analytical counterpart. 

3.2 Optimization problems for model updating  

For a linear structural system, the updating variables associated with the stiffness and mass information can be updated as 
Eq. (20)  and Eq. (21) , respectively. 

0 0,
1

n

r r
r

α

α
=

= +∑K K K  (20) 

0 0,
1

n

r r
r

β

β
=

= +∑M M M  (21) 

where K0 and M0 are the constant initial stiffness and mass matrices from original FE model; nα and nβ represent the total 
number of corresponding updating variables; αr and βr are the scalar multipliers associated with physical parameters to be 
updated, such as Young’s modulus, mass density, support spring stiffness, etc; K0,r and M0,r are the constant influence 
matrices that corresponded to αr and βr, respectively. The updating variables associated with damping can be damping 
coefficients a0 and a1 for Rayleigh damping model (Eq. (2)), and damping ratios ξi (i = 1,…, m) for Caughey damping 
model (Eq. (8)).  

The objective function for the FRF-based FE model updating shows the difference between the experimental FRF and 
analytical FRF. In order to obtain the optimal value for those updating variables, objective function value needs to be 
minimized under constraints. For Rayleigh damping case with one-DOF excitation, objective function in Eq. (22a) is used. 

( )
0 1

2A E
0 1, , ,

minimize , , ,
a a

a a −
α β

H α β H  (22a) 

 subject to ( ) ( )2
n, φi iω − = K α M β 0  (22b) 

T
T T T T

, , , ,1 1( ), , ( ) , , ( ), , ( )a b a b p q p qr e r e r e r en nH H H H H
ω ω

ω ω ω ω    =         
    (22c) 

( ) ( )
, ,

, 2 2 2
1 , 0 1 ,j

m
r i e i

r e
i n i n i

H
a a

φ φ
ω

ω ω ω ω=

=
− + + +

∑  (22d) 

;  l u≤ ≤α α α l u≤ ≤β β β  (22e) 

0 0 0 ;l ua a a≤ ≤ 1 1 1
l ua a a≤ ≤  (22f) 

where ‖∙‖ denotes any norm function; α, β, a0, a1 are the selected updating variables. Updated variables are subjected to 
constraints with lower bound and upper bound. Superscripts l and u denote the lower bound and upper bound of the 
corresponding updating variable, respectively; m is the total number of analytical modes used in model updating. 

For Rayleigh damping case with ground excitation, Eq. (22c) in the optimization problem is to be replaced by the following, 
and Eq. (22d) should be replaced by Eq. (15) accordingly. 

T
T T T T

,ground ,ground ,ground ,ground( ), , ( ) , , ( ), , ( )a a p pr r r rn nω ω
ω ω ω ω1 1

    =         
H H H H H    (23) 

For Caughey damping case with one-DOF excitation, objective function in Eq. (24a) and the transfer function matrix in 
Eq. (10) should be used.  The complete optimization problem is provided as follows. 
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( )
2A E

, ,
minimize , , −

α β ξ
H α β ξ H  (24a) 

subject to ( ) ( )2
, φn i iω − = K α M β 0  (24b) 

T
T T T T

, , , ,1 1( ), , ( ) , , ( ), , ( )a b a b p q p qr e r e r e r en nH H H H H
ω ω

ω ω ω ω    =         
    (24c) 

( ) , ,
, 2 2

, ,1 2 j

m
r i e i

r e
i n i n ii

H
φ φ

ω
ω ξ ω ω ω=

=
− + +∑  (24d) 

;  l u≤ ≤α α α l u≤ ≤β β β                                                               (24e) 
l u≤ ≤ξ ξ ξ  (24f) 

where T
1,..., mξ ξ=   ξ  are the selected damping updating variables. 

Similarly, for Caughey damping case with ground excitation, the transfer function vector Eq. (24c) in the optimization 
problem is to be replaced by Eq. (23), and the transfer function  (24d) is to be replaced by Eq. (16).  A global optimization 
toolbox, ‘Multistart’, together with a nonlinear least square optimization solver, ‘lsqnonlin’ in MATLAB toolbox (Math 
Works Inc., 2005), are adopted to find the optimal solution of the optimization problems above.  

 

4. EXPERIMENTAL VALIDATION 
To validate the FRF-based model updating method described in Section 3, a four-story shear-frame laboratory structure is 
built. In the first test scenario, hammer excitation is applied at every floor of the structure. In the second test scenario, 
shake table is used to generate ground excitation. 

4.1 Testbed structure  

Figure 1 shows the test structure mounted on a shake table. All the columns and the floors are made of aluminum alloy. 
The weight of every floor is 4.64kg (10.24 lbs.). Every story has 8 thin columns, which have the same rectangular section 
of: 0.0254m × 0.00159m (1 in. × 1/16 in.). The nominal Young’s modulus value of the aluminum columns is 63GPa.  The 
total height of the building is 1.182m (46.5 in.). The first three stories have the same height: 0.305m (12 in.), while the 
fourth story is 0.267m (10.5 in.). Fixed connections are applied at the end of the every column. Every floor can be taken 
as a rigid mass, and the columns mainly provide the lateral stiffness of the structure. Therefore, this four-story shear-frame 
structure can be idealized as a 4-DOF system. 

Every floor is instrumented with an accelerometer (Crossbow CXL01LF1) and a displacement sensor (Temposonics 
CS194AV) for measuring lateral vibration. Both sensors are interfaced with a wireless sensing system, Martlet [16]. 
Because kilo-Hertz high frequency sampling is needed for the impact hammer, an additional cabled National Instruments 
data acquisition system is used. A reference accelerometer (Crossbow CXL01LF1) is added on the fourth floor (show in 
Figure 1), and sampled by the cabled system. With one wireless accelerometer and one cabled accelerometer on the same 
floor, data from the two systems can be synchronized. 

4.2 Hammer test 

Before hammer tests, base fixtures are installed to hold the ground/base plate still during the test. The sampling frequency 
of the wireless sensing system is set to be 500Hz, and the sampling frequency for the cabled system with the impact 
hammer (Brüel & Kjær 8206-001) is set as 5000Hz. Figure 2 shows data from an example hammer impact at the 1st floor. 
After data synchronization, the 4th floor accelerations from the cabled system and wireless system can match well (Figure 
3).  

In order to obtain more FRF data, a hammer impact is applied to every floor. After obtaining all the displacement and 
acceleration responses, the receptances and accelerances for hammer tests are calculated. In this paper, only the four peak 
areas of the FRF curves are used for model updating. Table 1 summarizes updating results from hammer tests. Receptances 
and accelerances considering Rayleigh damping model and Caughey damping model are used, respectively. The initial 
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I
 

mass value for every floor only includes the contribution of plate mass. The inter-story stiffness is mainly contributed by 
the fixed-end shear stiffness from columns. The initial story stiffness values are calculated based on the nominal aluminum 
Young’s modulus, while considering the relatively significant P-Δ effect. Since damping information is least known, the 
initial values are chosen based on experience. In addition, during the updating process, the lower bounds and upper bounds 
for damping variables are set to be large. In the last column of Table 1, the relative standard deviation (RSD) for every 
variable is used to evaluate how well the model updating results obtained from different types of responses with different 
damping models agree with each other. The RSD is expressed in percentage. A small number means good agreement, 
while a large number means great dispersion. In this test, the largest RSD value of the updating variable is only 1.322%. 
Since Rayleigh damping and Caughey damping have different parameters in the model updating process, Table 1 does not 
calculate RSD value for damping information. For Rayleigh damping model, since a0 is much larger than a1, the damping 
contribution from a1 can be neglected. This type of damping can be considered as mass-proportional damping. For Caughey 
damping model, it is easy to observe that the updating result of damping ratio for every mode is consistent between the 
receptance and accelerance-based approaches. 

Figure 4 shows the updated FRF plots using Rayleigh damping model. Figure 4 (a) compares the initial, the experimental 
and the updated receptance H4,1. Figure 4 (b) shows the comparison for accelerance A4,1. The peak areas for these updated 
FRF curves can match well with the peak areas of experimental FRF curves. The frequency domain assurance criterion 
(FDAC) [17] value is utilized to compare the similarity between the peak areas of the updated and experimental FRFs. A 
value 1 means perfect correlation, 0 means no correlation at all. The FDAC value in Figure 4 (a) is 0.955 and the FDAC 
value in Figure 4 (b) is 0.971. 
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Figure 1. The test structure and experimental setup 

 

 

 

 
Figure 2.  Example hammer impact applied at the 1st floor 

 
Figure 3.  Data synchronization between cabled and wireless 
sensing system 
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Figure 5 shows the updated FRF plots using Caughey damping model. Figure 5 (a) compares the initial, the experimental 
and the updated receptance H3,4. Figure 5 (b) shows the comparison for accelerance A3,4. The peak areas for these updated 
FRF curves can match well with the peak areas of experimental FRF curves.  The FDAC value in Figure 5 (a) is 0.987 and 
the FDAC value in Figure 5 (b) is 0.975. Overall, FDAC values in Caughey damping case are larger than those in Rayleigh 
damping case, since Caughey damping has more updating variables. The size of the structure used in this model updating 
is small, so the computation time difference is negligible for the model updating processes with these two damping models. 
However, FE model updating for a large structure with Caughey damping model may cost more time than Rayleigh 
damping model. 

4.3 Shake table (ground excitation) test 

In order to validate model updating using ground excitation formulations, in Eq.(15) and Eq.(16), a shake table test is 
conducted. The modal shaker is able to generate horizontal base acceleration to the structure, as shown in Figure 1. During 
the shaker test, the fixtures are removed from the ground floor. A chirp signal ranging from 0Hz to 10Hz within 60s is 

 
(a) Receptance  H4,1 

 
(b) Accelerance  A4,1 

Figure 4. Hammer test: comparison of the initial, the experimental and the updated FRFs (Rayleigh damping) 

 

 

Table 1. Model updating results from impact hammer tests 

Parameter Initial 
Rayleigh damping Caughey damping RSD 

(%) Updated 
(Receptance) 

Updated 
(Accelerance) 

Updated 
(Receptance) 

Updated 
(Accelerance) 

Mass 
(kg) 

1m  4.64 5.155 5.155 5.155 5.155 0.001 

2m  4.64 4.953 4.953 5.030 4.977 0.733 

3m  4.64 4.949 4.949 4.949 4.949 0.000 

4m  4.64 5.090 5.143 5.105 5.143 0.524 

Stiffness 
(N/m) 

1k  1019 1089.677 1073.751 1097.386 1108.075 1.322 

2k  1217 1257.784 1261.664 1270.792 1259.538 0.458 

3k  1420 1378.311 1395.234 1382.871 1364.084 0.932 

4k  2473 2665.588 2659.859 2670.688 2688.651 0.466 

Damping 

0a  or 1ξ  0.01 / 0.01 0.2210 0.2670 0.0168 0.0163 - 

1a  or 2ξ  610−  / 0.01 -1010  -1010  0.0115 0.0114 - 

3ξ  0.01 - - 0.0051 0.0049 - 

4ξ  0.01 - - 0.0021 0.0020 - 

 

0 1 2 3 4 5 6 7

-120

-100

-80

-60

-40

-20

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

 

 

Experimental  |H41|

Initial |H41|

Updated  |H41|

0 1 2 3 4 5 6 7

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

 

 

Experimental |A4,1|

Initial |A4,1|

Updated |A4,1|

Proc. of SPIE Vol. 9803  980325-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



adopted as the ground excitation. After the test, FRF-based model updating is applied to the receptances and accelerances 
calculated using the response of every floor and the measured chirp excitation at the ground floor. Figure 6 shows the 
measured ground excitation time history. Figure 7 shows the measured acceleration and displacement response time history 
of the 1st floor. 

Table 2 summarizes updating results from the shake table test. Receptances and accelerances are updated for both Rayleigh 
damping model and Caughey damping model. The largest RSD value of the updating variable is only 1.886%. In Rayleigh 
damping case, the values of updated 0a  from receptances and accelerances have a large difference. While in Caughey 
damping case, the damping ratio of every mode updated from receptances and accelerances is consistent. Therefore, 
Caughey damping model is assumed to be more suitable than Rayleigh damping model for this structure.  

Figure 8 shows the updated FRF plots using Rayleigh damping model. Figure 8(a) compares the initial, the experimental 
and the updated receptance H2,ground. Figure 8 (b) shows the comparison for accelerance A2,ground. The peak areas for these 
updated FRF curves can match well with the peak areas of experimental FRF curves. The FDAC value in Figure 8 (a) is 
0.990 and the FDAC value in Figure 8 (b) is 0.949.  Figure 9 shows the updated FRF plots using Caughey damping model. 
Figure 9 (a) compares the initial, the experimental and the updated receptance H4,ground. Figure 9 (b) shows the comparison 
for accelerance A4,ground. The FDAC value in Figure 9 (a) is 0.991 and the FDAC value in Figure 9 (b) is 0.958. Same as 
the hammer test scenario, the overall FDAC values in Caughey damping case are larger than those in Rayleigh damping 
case. 

  
(a) Receptance H3,4 (b) Accelerance A3,4 

Figure 5. Hammer test: comparison of the initial, the experimental and the updated FRFs (Caughey damping) 

 

 

  
Figure 6.  Ground acceleration time history Figure 7.  Responses time history of 1st floor 

 

 

0 1 2 3 4 5 6 7

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

 

 
Experimental |H3,4|

Initial |H3,4|

Updated |H3,4|

0 1 2 3 4 5 6 7
-100

-80

-60

-40

-20

0

20

40

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

 

 

Experimental |A3,4|

Initial |A3,4|

Updated |A3,4|

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1

A
cc

el
er

at
io

n 
(m

/s
2 )

0 10 20 30 40 50 60
-2

-1

0

1

2
x 10

-3

Time (s)

D
is

pl
ac

em
en

t (
m

)

Proc. of SPIE Vol. 9803  980325-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Comparison between the updating results from hammer tests and the shake table test (Table 1 and Table 2) show that the 
mass and stiffness results are stable between the two tests. However, large differences are observed for damping results. 
As expected, it is shown that damping is much more challenging to characterize than mass and stiffness. 

5. SUMMARY AND DISCUSSION 
This research investigates the FRF-based FE model updating method. The method minimizes the difference between the 
experimental and analytical FRFs. The modal-decomposed form of analytical FRF is used in updating procedure.  
Experimental model updating is performed on a 4-story shear-frame laboratory structure. Two different types of FRFs 
(accelerance and receptance) with Rayleigh damping model and Caughey damping model are used to compare the updating 
results. Two test scenarios are studied: one is hammer test, and the other is shake table test. In order to get more FRF 
information at different locations, the displacement and acceleration of every floor of the structure are measured in all tests. 
The model updating results show that updating variables associated with mass and stiffness have better consistency from 
different test scenarios than the damping variables. In addition, Caughey damping case gives better performance in model 

Table 2. Model updating results from ground excitation 

Parameter Initial  
Rayleigh damping Caughey damping RSD 

 (%) Updated  
(Receptance) 

Updated  
(Accelerance) 

Updated  
(Receptance) 

Updated  
(Accelerance) 

Mass 
 (kg) 

1m  4.64 5.155 5.146 5.155 5.155 0.092 

2m  4.64 5.067 4.953 5.155 5.155 1.886 

3m  4.64 4.949 4.949 4.949 4.949 0.000 

4m  4.64 5.143 5.143 5.143 5.143 0.000 

Stiffness 
(N/m) 

1k   1019 1066.005 1071.018 1049.846 1054.194 0.934 

2k  1217 1271.367 1255.729 1289.074 1292.659 1.337 

3k  1420 1363.619 1334.025 1392.786 1381.518 1.873 

4k  2473 2712.432 2711.849 2696.013 2692.271 0.389 

Damping  

0a  or 1ξ  0.01 / 0.01 0.2850 0.1530 0.0142 0.0142 - 

1a  or 2ξ  610−  / 0.01 0.0001 0.0001 0.0070 0.0070 - 

3ξ  0.01 - - 0.0056 0.0058 - 

4ξ  0.01 - - 0.0064 0.0081 - 

 
 

 
(a) Receptance 2,groundH  

 
(b) Accelerance 2,groundA  

Figure 8. Shake table test: comparison of the initial, the experimental and the updated FRFs (Rayleigh damping) 
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updating, but it can be more time-consuming for large FE models. In the future, more damping models will be studied for 
this structure, and the FRF-based FE model updating will be performed on more realistic structures. 
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