
1

Formulation and Application of SMU – an Open-Source MATLAB Package

for Structural Model Updating

Yu Otsuki1, Peter Lander1, Xinjun Dong1, Yang Wang1, 2

1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

2 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

*yang.wang@ce.gatech.edu

Abstract: This paper describes a MATLAB package for structural model updating, named SMU. The SMU package

updates parameter values of a finite element model by solving optimization problems utilizing modal properties

obtained from sensor measurements. In particular, the package offers three model updating formulations, namely (1)

the MAC (modal assurance criterion) value approach, (2) the eigenvector difference approach, and (3) the modal

dynamic residual formulation. The first two belong to the family of modal property difference formulations. For each

formulation, the analytical Jacobian derivative of the objective function is derived and implemented in SMU. Since

the formulated optimization problems are generally nonconvex, the global optimality of the solution cannot be

guaranteed using off-the-shelf optimization algorithms. In order to increase the chance of finding a better local

minimum, the SMU package can perform gradient search from randomly generated starting points. Several examples

for the model updating of as-built structures are included in the GitHub package. This paper demonstrates the SMU

functionality through model updating of an 18-DOF model and a concrete building frame model.

Keywords: finite element model updating, open-source software, non-convex optimization, optimization algorithms,

modal analysis

1 Introduction

In modern structural analysis, a great amount of effort has been devoted to finite element (FE) modeling towards

simulating the behavior of an as-built structure. In general, predictions by FE models often differ from in-situ

experimental measurements. Various inaccuracies in the models can contribute to the discrepancy. For example,

idealized connections and support conditions are commonly used in structural analysis and design, while these

mailto:*yang.wang@ce.gatech.edu

2

conditions with infinite or zero stiffness do not exist in reality. In addition, material properties of an as-built structure

are usually different from the nominal values, particularly for concrete. To obtain a more accurate FE model that truly

reflects behaviors of an as-built structure, data collected from the in-situ experiments can be used to update the values

of selected model parameters (e.g. support stiffness or mass parameters) in the FE model. This process is known as

FE model updating. An updated FE model can more accurately predict structural behavior under various loading

conditions and also serve as the baseline for identifying structural property changes over time, potentially due to

deterioration. In the meantime, benefiting from the development of low-cost wireless sensing systems (Lynch and

Loh, 2006; Kane et al., 2014; Dong et al., 2016), more and more structural sensors are available for measuring

structural responses. As a result, large amounts of sensor data collected from as-built structures are becoming available

for FE model updating, which on the other hand, poses computational challenges for performing model updating.

Numerous FE model updating algorithms have been developed and practically applied in the past few decades

(Friswell and Mottershead, 1995). Most algorithms can be categorized into two groups, i.e. time-domain and

frequency-domain approaches. Time-domain approaches deal with time history data collected from the actual structure

directly, without the requirement for extracting modal properties (Yang et al., 2006; Doucet and Tadić, 2003; Chatzi

and Smyth, 2009; Sato and Qi, 1998). Overall, the time-domain approaches suffer convergence difficulties and high

computational cost when applied to large-scale FE models. Different from the time-domain approaches, the frequency-

domain approaches can update an FE model using frequency-domain modal properties extracted from experimental

measurements. These include resonant frequencies, vibration mode shapes and damping ratios. In particular, early

researchers started by minimizing an objective function consisting of the differences between measured and simulated

resonant frequencies. Naturally, this is formulated as a mathematical optimization problem with the selected structural

parameters as optimization variables. This category of model updating approaches is named the modal property

difference formulation. For example, Zhang et al. (2000) proposed an eigenvalue sensitivity-based model updating

approach that was applied on a scaled suspension bridge model, and the updated FE model shows resonant frequencies

closer to the experimental measurements. Salawu (1997) reviewed various model updating algorithms using resonant

frequency differences, and concluded that differences in frequencies may not be sufficient enough for accurately

identifying structural parameter values. As a result, other modal properties, e.g. mode shapes or modal flexibility,

were investigated for model updating. For example, Moller and Friberg (1998) adopted the modal assurance criterion

(MAC)-related function for updating the model of an industrial structure, in attempt to make the updated FE model

3

generate mode shapes that are closer to those extracted from experimental measurements. FE model updating using

differences in simulated and experimental mode shapes and frequencies was also applied to damage assessment of a

reinforced concrete beam (Teughels et al., 2002). Yuen (2012) developed an efficient model updating algorithm using

frequencies and mode shapes at only a few selected degrees-of-freedom (DOFs) for the first few modes. Another

formulation widely applied in frequency domain model updating is the modal dynamic residual formulation, which

minimizes the residuals of generalized eigenvalue problems involving stiffness and mass matrices (Farhat and Hemez,

1993; Li et al., 2018; Kosmatka and Ricles, 1999). The model updating formulations are in general nonconvex, and

global optimality of the solution cannot be guaranteed using off-the-shelf local optimization algorithms (Wang et al.,

2019a). Attempts have been made to obtain the global optimum of the optimization problems in FE model updating

(Li et al., 2018; Otsuki et al., 2021a; Bakir et al., 2008; Hofmeister et al., 2019). Furthermore, model updating of large-

scale structures is computationally challenging. Substructure-based approaches have been proposed to reduce the

computational cost (Weng et al., 2011; Zhu et al., 2016; Zhu et al., 2021).

From a practical point of view, the implementation of structural model updating can be challenging especially

for those who are not familiar with mathematical optimization. Difficulties arise in how to construct an objective

function and variable constraints, how to select optimization algorithms, and how to deal with nonconvex problems.

Optimization algorithms perform gradient search using the Jacobian derivative at every iteration. It has been known

that the analytical gradient can achieve better accuracy in model updating compared to the numerical gradient (Dong

and Wang, 2018). However, the derivation and implementation of analytical gradients for various model updating

formulations can be challenging.

SMU, an open-source MATLAB package for structural model updating, is developed and shared with the

research community (Wang et al., 2019b). The package implements three model updating formulations in the

frequency domain with the corresponding analytical gradients. Currently, SMU supports optimization algorithms

available in the MATLAB optimization toolbox (MathWorks Inc., 2019), such as the Levenberg-Marquardt algorithm,

the trust-region-reflective algorithm, the interior-point method, etc. In order to increase the chance of finding a better

local minimum for the nonconvex optimization problem, the package performs gradient search from randomly

generated starting points. Several examples for the model updating of as-built structures are included in the GitHub

package. SMU has been readily utilized to facilitate research in structural model updating (Zhang and Sun, 2020;

Otsuki et al., 2021a; Dong and Wang, 2019).

4

The rest of the paper is organized as follows. Section 2 presents the three model updating formulations adopted

in SMU. Section 3 shows the mathematical derivation of the analytical Jacobian derivatives for each model updating

formulation. Section 4 describes the key components and user interface of SMU. Sections 5 and 6 demonstrate the

model updating of an 18-story steel frame and a concrete building frame using SMU. Finally, Section 7 provides a

summary and conclusions.

2 Structural model updating formulations

The formulations adopted in the current version of SMU update stiffnesses of structural models, while if needed, the

functionality can be extended for mass and damping updating. For model updating of a linear structure with N DOFs,

the stiffness matrices can be expressed as:

𝐊(𝛂) = 𝐊0 +∑𝛼𝑗𝐊𝑗

𝑛𝛂

𝑗=1

 (1)

where 𝐊0 ∈ ℝ
𝑁×𝑁 is the initial stiffness matrix; 𝑛𝛂 is the number of stiffness updating variables; 𝛼𝑗 is the j-th entry

of the stiffness updating vector variable 𝛂 ∈ ℝ𝑛𝛂, which represents the relative change of a stiffness parameter from

the initial value; and 𝐊𝑗 ∈ ℝ
𝑁×𝑁 is the influence matrix for the j-th stiffness updating variable 𝛼𝑗.

The formulations adopted in SMU are based on the generalized eigenvalue problem in structural dynamics:

[𝐊(𝛂) − 𝜆𝑖𝐌]{𝛙𝑖} = 𝟎, 𝑖 = 1…𝑛modes (2)

where 𝐌 ∈ ℝ𝑁×𝑁 denotes the mass matrix; 𝜆𝑖 ∈ ℝ and 𝛙𝑖 ∈ ℝ
𝑁 are the i-th eigenvalue and eigenvector, respectively;

and 𝑛modes denotes the number of modes. Note that 𝜆𝑖 and 𝛙𝑖 implicitly depend on 𝛂, and thus can be denoted as

𝜆𝑖(𝛂) and 𝛙𝑖(𝛂). In general, eigenvectors obtained through field testing are limited to the DOFs measured by sensors.

To reflect the measured DOFs, we assume the DOFs are rearranged properly and define 𝛙𝑖(𝛂) =

[𝛙𝑖
ℳ(𝛂); 𝛙𝑖

𝒰(𝛂)] ∈ ℝ𝑁 , where 𝛙𝑖
ℳ(𝛂) ∈ ℝ𝑛ℳ represents the eigenvector entries corresponding to the measured

DOFs and 𝛙𝑖
𝒰 ∈ ℝ𝑛𝒰 corresponds to the unmeasured DOFs. In this paper, we use a semicolon “;” to concatenate

vectors/matrices by columns. Note that 𝑛ℳ + 𝑛𝒰 = 𝑁, the total number of DOFs. In this paper, experimentally

obtained eigenvalues and eigenvectors are denoted as 𝜆𝑖
EXP and 𝛙𝑖

EXP,ℳ
(at measured DOFs), respectively.

5

2.1 Modal property difference formulation #1: MAC value approach

The SMU package supports the MAC (modal assurance criterion) value approach, which is categorized as a modal

property difference formulation.

minimize
𝛂

∑ {(
𝜆𝑖
EXP − 𝜆𝑖(𝛂)

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖)

2

+ (
1 − √MAC𝑖(𝛂)

√MAC𝑖(𝛂)
∙ 𝑤𝛙𝑖)

2

}

𝑛modes

𝑖=1

 subject to 𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂

(3)

where 𝑤𝜆𝑖 represents the weighting factor of the i-th eigenvalue difference; 𝑤𝛙𝑖 represents the weighting factor of the

i-th MAC value difference; and 𝐋𝛂 and 𝐔𝛂 ∈ ℝ
𝑛𝛂 denote the lower and upper bounds for the variable 𝛂, respectively.

MAC𝑖(𝛂) represents the modal assurance criterion between the i-th experimental and simulated eigenvectors/mode

shapes at measured DOFs, i.e. 𝛙𝑖
EXP,ℳ

 and 𝛙𝑖
ℳ(𝛂).

MAC𝑖(𝛂) =
((𝛙𝑖

EXP,ℳ)
T
𝛙𝑖
ℳ(𝛂))

2

‖𝛙𝑖
EXP,ℳ‖

2

2
‖𝛙𝑖

ℳ(𝛂)‖
2

2
, 𝑖 = 1…𝑛modes (4)

Here ‖∙‖2 denotes the ℒ2-norm of a vector. The MAC value represents the similarity between two vectors. When the

two vectors are collinear, the MAC value is 1. When two vectors are orthogonal, the MAC value is 0.

At every iteration of an optimization gradient search, the generalized eigenvalue problem in Eq. (2) is solved

using values of 𝛂 at the current iteration, which produces simulated eigenvalues 𝜆𝑖(𝛂) and eigenvectors 𝛙𝑖(𝛂). This

process determines that with implicit functions 𝜆𝑖(𝛂) and MAC𝑖(𝛂), the objective function in Eq. (3) has to remain

implicit. For 𝛂 at the current iteration, the optimization algorithm then evaluates the objective function value in Eq.

(3) and calculates the Jacobian derivative to find the next search gradient. It then moves to the next iteration and

repeats this process until convergence criteria are satisfied. Besides having an implicit objective function, the MAC

value approach provides a nonconvex optimization problem for which the global optimality of the solution cannot be

guaranteed using local optimization algorithms.

2.2 Modal property difference formulation #2: eigenvector difference approach

Another modal property difference formulation supported in SMU is the eigenvector difference approach.

6

minimize
𝛂

∑ {(
𝜆𝑖
EXP − 𝜆𝑖(𝛂)

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖)

2

+ ‖{𝛙−𝑞𝑖,𝑖
EXP,ℳ −𝛙−𝑞𝑖,𝑖

ℳ (𝛂)} ∙ 𝑤𝛙𝑖‖2

2

}

𝑛modes

𝑖=1

 subject to 𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂

(5)

where 𝑤𝜆𝑖 represents the weighting factor of the i-th eigenvalue difference; 𝑤𝛙𝑖 represents the weighting factor of the

i-th eigenvector difference. The experimental eigenvector at measured DOFs 𝛙𝑖
EXP,ℳ

 is normalized so that the largest

entry of 𝛙𝑖
EXP,ℳ

, denoted as the 𝑞𝑖-th entry, equals to 1. Accordingly, the simulated eigenvector at measured DOFs

𝛙𝑖
ℳ is also normalized so that the 𝑞𝑖-th entry equals to 1. 𝛙−𝑞𝑖,𝑖

EXP,ℳ
 and 𝛙−𝑞𝑖,𝑖

ℳ ∈ ℝ𝑛ℳ−1 represent the eigenvectors at

the measured DOFs with the 𝑞𝑖-th entry removed. Compared to the MAC value approach, the eigenvector difference

approach directly minimizes the differences between the entries in the experimental and simulated eigenvectors. Note

that the eigenvector difference approach also has an implicit objective function and is a nonconvex optimization

problem.

2.3 Modal dynamic residual formulation

The last formulation currently implemented in SMU is the modal dynamic residual formulation. The formulation

minimizes the residual of generalized eigenvalue equations in structural dynamics. The residuals are calculated based

on the stiffness and mass matrices in combination with experimentally obtained eigenvalues and eigenvectors.

minimize
𝛂,𝛙𝒰

∑ ‖[𝐊(𝛂) − 𝜆𝑖
EXP𝐌]{

𝛙𝑖
EXP,ℳ

𝛙𝑖
𝒰

} ∙ 𝑤𝑖‖
2

2𝑛modes

𝑖=1

subject to 𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂

 𝐋𝛙𝒊
𝒰 ≤ 𝛙𝑖

𝒰 ≤ 𝐔𝛙𝒊
𝒰 , 𝑖 = 1…𝑛modes

(6)

where 𝑤𝑖 represents the weighting factor for the i-th mode, and 𝛙𝑖
𝒰 ∈ ℝ𝑛𝒰 represents the unmeasured entries of i-th

eigenvector. Compared to the modal property difference formulations, the modal dynamic residual formulation has

more updating variables 𝛙𝑖
𝒰, 𝑖 = 1…𝑛modes. Note that the objective function in Eq. (6) is explicitly expressed by

optimization variables 𝛂 and 𝛙𝑖
𝒰, while Eq. (3) and Eq. (5) for the modal property difference formulations are not.

The modal dynamic residual formulation is convex in the rare case when all DOFs are measured (i.e. 𝑛ℳ = 𝑁, 𝑛𝒰 =

0, and 𝛙𝑖
𝒰 is null). However, when only some DOFs are measured, as often the case in practice, the formulation is

nonconvex.

7

2.4 Summary of model updating formulations

Each formulation implemented in SMU has pros and cons in terms of computational efficiency and updating

performance. In general, by not involving the MAC value term, the eigenvector difference approach (Eq. (5)) is

computationally more efficient than the MAC value approach (Eq. (3)). Numerical studies have shown that the

eigenvector difference approach usually achieves higher accuracy than the MAC value approach (Dong and Wang,

2018). The modal dynamic residual formulation (Eq. (6)) is based on a different concept from the MAC value and the

eigenvector difference approaches. The modal dynamic residual formulation does not directly minimize the

discrepancy of modal properties, and thus, the updated model may have modal properties that are more different from

experimental values. It is highly recommended to investigate and compare model updating results using different

formulations especially when dealing with experimental data.

 In general, when using experimental data, the system identification results of eigenvectors have more

variability and can be less accurate compared to eigenvalues. Moreover, it is more challenging to accurately identify

the eigenvalues and eigenvectors for higher modes than those for lower modes. Therefore, users can take into account

the reliability of the identified modal parameters through the use of weighting factors, 𝑤𝜆𝑖 and 𝑤𝛙𝑖 in Eq. (3) and Eq.

(5) or 𝑤𝑖 in Eq. (6). Furthermore, if several vibration records and system identification results are available, statistical

properties of identified results, such as standard deviation, can be reflected in weighting factors to consider

uncertainties in measurements and system identification results.

3 Jacobian derivatives of the formulations

The numerical optimization algorithms solving Eq. (3), Eq. (5), and Eq. (6) are iterative. At every iteration step, the

Jacobian derivative (short-named as the Jacobian) of the objective function is often used to determine the search

direction. To facilitate the Jacobian derivation, the optimization problems in Eq. (3), Eq. (5), and Eq. (6) can be

rewritten as:

minimize
𝐱

 𝑓(𝐱) = 𝐫(𝐱)T𝐫(𝐱) = ‖𝐫(𝐱)‖2
2

subject to 𝐋𝐱 ≤ 𝐱 ≤ 𝐔𝐱

(7)

where 𝐱 ∈ ℝ𝑛𝐱 is a vector variable; 𝐫(𝐱):ℝ𝑛𝐱 → ℝ𝑛r is a residual vector function; 𝑓(𝐱): ℝ𝑛𝐱 → ℝ is an objective

function; 𝑛𝐱 is the length of the vector variable 𝐱; and 𝑛𝐫 is the length of the residual vector function 𝐫. The Jacobian

8

of the objective function 𝑓(𝐱) is defined as D𝐱𝑓 = [
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2
⋯

𝜕𝑓

𝜕𝑥𝑛𝐱
] ∈ ℝ1×𝑛𝐱. In the following subsections, the

Jacobians of the objective functions shown in Eq. (3), Eq. (5), and Eq. (6) will be derived.

3.1 Jacobian of modal property difference formulation #1: MAC value approach

When using the MAC value approach in Eq. (3), the vector variable x in Eq. (7) is the stiffness updating vector variable

𝛂. Hence, the MAC value formulation in Eq. (3), is rewritten in least squares form as 𝑓(𝛂) = 𝐫(𝛂)𝐓𝐫(𝛂) with a

residual vector function 𝐫(𝛂):ℝ𝑛𝛂 → ℝ2∙𝑛modes as:

𝐫(𝛂) = [

𝐫1(𝛂)
⋮

𝐫𝑛modes(𝛂)
] =

[

 (𝜆1

EXP − 𝜆1(𝛂)) 𝜆1
EXP⁄ ∙ 𝑤𝜆1

(1 − √MAC1(𝛂)) √MAC1(𝛂)⁄ ∙ 𝑤𝛙1

⋮

(𝜆𝑛modes
EXP − 𝜆𝑛modes(𝛂)) 𝜆𝑛modes

EXP ∙ 𝑤𝜆𝑛modes
⁄

(1 − √MAC𝑛modes(𝛂)) √MAC𝑛modes(𝛂)⁄ ∙ 𝑤𝛙𝑛modes]

 (8)

where 𝐫𝑖(𝛂):ℝ
𝑛𝛂 → ℝ2 equals [

𝜆𝑖
EXP−𝜆𝑖(𝛂)

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖;

1−√MAC𝑖(𝛂)

√MAC𝑖(𝛂)
∙ 𝑤𝛙𝑖] , 𝑖 = 1…𝑛modes. The Jacobian for 𝑓(𝛂), D𝛂𝑓 ∈

ℝ1×𝑛𝛂 , equals D𝐫𝑓 ∙ D𝛂𝐫 by using the chain rule. The first term is D𝐫𝑓 = 2𝐫
T ∈ ℝ1×(2∙𝑛modes). The second term is

D𝛂𝐫 = [D𝛂𝐫1; D𝛂𝐫2; ⋯ D𝛂𝐫𝑛modes] ∈ ℝ
(2∙𝑛modes)×𝑛𝛂 . Recall the definition of the MAC value in Eq. (4), each

D𝛂𝐫𝑖 ∈ ℝ
2×𝑛𝛂 can be formed as:

D𝛂𝐫𝑖 =

[

 −

𝑤𝜆𝑖
𝜆𝑖
EXP ∙ D𝛂(𝜆𝑖(𝛂))

(
−𝑤𝛙𝑖

√MAC𝑖(𝛂)
)(

(𝛙𝑖
EXP,ℳ)

T

(𝛙𝑖
EXP,ℳ)

T
𝛙𝑖
ℳ(𝛂)

−
(𝛙𝑖

ℳ(𝛂))
T

‖𝛙𝑖
ℳ(𝛂)‖

2

2)D𝛂 (𝛙𝑖
ℳ(𝛂))

]

, 𝑖 = 1…𝑛modes (9)

The formulation for D𝛂(𝜆𝑖(𝛂)) ∈ ℝ
1×𝑛𝛂 and D𝛂 (𝛙𝑖

ℳ(𝛂)) ∈ ℝ𝑛ℳ×𝑛𝛂 have been well studied by researchers (Fox and

Kapoor, 1968; Nelson, 1976). Nevertheless, a simplified way of obtaining D𝛂 (𝛙𝑖
ℳ(𝛂)) based on the normalization

of 𝛙𝑖
ℳ(𝛂) is presented, without expressing the derivative as a linear combination of all the eigenvectors (as in (Nelson,

1976)). Recall the generalized eigenvalue equation for the i-th mode:

[𝐊(𝛂) − 𝜆𝑖𝐌]{𝛙𝑖} = 𝟎 (10)

9

By differentiating Eq. (10) with respect to the j-th updating variable, 𝛼𝑗, the following equation can be obtained.

[𝐊(𝛂) − 𝜆𝑖𝐌]
𝜕𝛙𝑖

𝜕𝛼𝑗
=
𝜕𝜆𝑖
𝜕𝛼𝑗

𝐌𝛙𝑖 − 𝐊𝑗𝛙𝑖 (11)

Assume that the eigenvalues are distinct and define the modal mass of the i-th mode as 𝑚𝑖 = (𝛙𝑖)
T𝐌𝛙𝑖. Then, pre-

multiply Eq. (11) by (𝛙𝑖)
T, and note (𝛙𝑖)

T[𝐊(𝛂) − 𝜆𝑖𝐌] = 𝟎. Eq. (11) can be simplified as follows,

(𝛙𝑖)
T𝐊𝑗𝛙𝑖 =

𝜕𝜆𝑖
𝜕𝛼𝑗

(𝛙𝑖)
T𝐌𝛙𝑖 (12)

and 𝜕𝜆𝑖 𝜕𝛼𝑗⁄ ∈ ℝ can be obtained.

𝜕𝜆𝑖
𝜕𝛼𝑗

=
(𝛙𝑖)

T𝐊𝑗𝛙𝑖

𝑚𝑖
 (13)

As a result, the Jacobian of the i-th simulated eigenvalue, D𝛂(𝜆𝑖) ∈ ℝ
1×𝑛𝛂, with respect to updating vector, α, can be

found as follows:

D𝛂(𝜆𝑖) = [
𝜕𝜆𝑖
𝜕𝛼1

𝜕𝜆𝑖
𝜕𝛼2

⋯
𝜕𝜆𝑖
𝜕𝛼𝑛𝛂

] = [
(𝛙𝑖)

T𝐊1𝛙𝑖

𝑚𝑖

(𝛙𝑖)
T𝐊2𝛙𝑖

𝑚𝑖
⋯

(𝛙𝑖)
T𝐊𝑛𝛂𝛙𝑖

𝑚𝑖

] (14)

After obtaining 𝜕𝜆𝑖 𝜕𝛼𝑗⁄ , Eq. (11) is reused to find the only remaining unknown term, ∂𝛙𝑖 ∂α𝑗 ∈ ℝ
𝑁⁄ . However,

∂𝛙𝑖 ∂α𝑗⁄ cannot be directly obtained from Eq. (11), because [𝐊(𝛂) − 𝜆𝑖𝐌] is rank deficient by one assuming that the

eigenvalue 𝜆𝑖 is distinct. Nevertheless, as previously mentioned, 𝛙𝑖
ℳ is normalized so that the 𝑞𝑖-th entry always

equals a constant 1. As a result, the 𝑞𝑖-th entry in vector ∂𝛙𝑖
ℳ ∂𝛼𝑗⁄ is zero, i.e. ∂𝜓𝑞𝑖,𝑖

ℳ ∂𝛼𝑗⁄ = 0. Because of the

separation by measured and unmeasured DOFs, 𝛙𝑖(𝛂) = [𝛙𝑖
ℳ(𝛂); 𝛙𝑖

𝒰(𝛂)], the 𝑞𝑖-th entry in ∂𝛙𝑖 ∂𝛼𝑗⁄ is also zero,

i.e. ∂𝜓𝑞𝑖,𝑖 ∂𝛼𝑗⁄ = 0. This is utilized to resolve the rank deficiency issue of [𝐊(𝛂) − 𝜆𝑖𝐌]. Specifically, define 𝚸𝑖 =

[
𝐐𝑖 𝟎(𝑛ℳ−1)×𝑛𝒰

𝟎𝑛𝒰×𝑛ℳ 𝐈𝑛𝒰
] ∈ ℝ(𝑁−1)×𝑁 where 𝐐𝑖 ∈ ℝ

(𝑛ℳ−1)×𝑛ℳ selects the entries of measured DOFs except for the

𝑞𝑖-th entry as:

𝐐𝑖 = [
𝐈𝑞𝑖−1 𝟎(𝑞𝑖−1)×1 𝟎(𝑞𝑖−1)×(𝑛ℳ−𝑞𝑖)

𝟎(𝑛ℳ−𝑞𝑖)×(𝑞𝑖−1)
𝟎(𝑛ℳ−𝑞𝑖)×1

𝐈𝑛ℳ−𝑞𝑖

] (15)

10

where 𝐈𝑞𝑖−1 and 𝐈𝑛ℳ−𝑞𝑖
 denote identity matrices with size of 𝑞𝑖 − 1 and 𝑛ℳ − 𝑞𝑖, respectively. Then, pre-multiplying

and post-multiplying [𝐊(𝛂) − 𝜆𝑖𝐌] in Eq. (11) by 𝚸𝑖 and 𝚸𝑖
T to cross out the 𝑞𝑖 -th row and 𝑞𝑖 -th column, 𝐁𝑖 ∈

ℝ(𝑁−1)×(𝑁−1) is generated.

𝐁𝑖 = 𝚸𝑖[𝐊(𝛂) − 𝜆𝑖𝐌]𝚸𝑖
T (16)

Next, pre-multiply (
𝜕𝜆𝑖

𝜕𝛼𝑗
𝐌𝛙𝑖 − 𝐊𝑗𝛙𝑖) in Eq. (11) by 𝚸𝑖 to eliminate the 𝑞𝑖-th row and obtain 𝐛𝑖𝑗 ∈ ℝ

𝑁−1:

𝐛𝑖𝑗 = 𝚸𝑖 ∙ (
𝜕𝜆𝑖
𝜕𝛼𝑗

𝐌𝛙𝑖 − 𝐊𝑗𝛙𝑖) (17)

Finally, recalling ∂𝜓𝑞𝑖,𝑖 ∂𝛼𝑗⁄ = 0, the elimination of the 𝑞𝑖-th row in Eq. (11) is equivalent to the following.

𝐁𝑖

{

𝜕(𝐐𝑖𝛙𝑖

ℳ)

𝜕𝛼𝑗

𝜕(𝛙𝑖
𝒰)

𝜕𝛼𝑗 }

= 𝐛𝑖𝑗 (18)

Thus, the Jacobian of the i-th simulated eigenvector with respect to the updating variables can be shown as:

{

𝜕(𝐐𝑖𝛙𝑖

ℳ)

𝜕𝛼𝑗

𝜕(𝛙𝑖
𝒰)

𝜕𝛼𝑗 }

= 𝐁𝑖
−1𝐛𝑖𝑗 (19)

In summary, ∂𝛙𝑖
ℳ ∂𝛼𝑗⁄ is 0 at the 𝑞𝑖-th entry, and other entries are provided by the equation above. The Jacobian of

the simulated eigenvector at measured DOFs, D𝛂(𝛙𝑖
ℳ) ∈ ℝ𝑛ℳ×𝑛𝛂 in Eq. (9), can be obtained as follows:

 𝐃𝛂(𝛙𝑖
ℳ) = [

𝜕𝛙𝑖
ℳ

∂𝛼1

𝜕𝛙𝑖
ℳ

∂𝛼2
⋯

𝜕𝛙𝑖
ℳ

∂𝛼𝑛𝛂
]

(20)

 row #

 =

[

𝜕𝜓1,𝑖

ℳ ∂𝛼1⁄ 𝜕𝜓1,𝑖
ℳ ∂𝛼2⁄ ⋯ 𝜕𝜓1,𝑖

ℳ ∂𝛼𝑛𝛂⁄

⋮ ⋮ ⋯ ⋮
𝜕𝜓𝑞𝑖−1,𝑖

ℳ ∂𝛼1⁄ 𝜕𝜓𝑞𝑖−1,𝑖
ℳ ∂𝛼2⁄ ⋯ 𝜕𝜓𝑞𝑖−1,𝑖

ℳ ∂𝛼𝑛𝛂⁄

0 0 ⋯ 0
𝜓𝑞𝑖+1,𝑖
ℳ ∂𝛼1⁄ 𝜕𝜓𝑞𝑖+1,𝑖

ℳ ∂𝛼2⁄ ⋯ 𝜕𝜓𝑞𝑖+1,𝑖
ℳ ∂𝛼𝑛𝛂⁄

⋮ ⋮ ⋯ ⋮
𝜓𝑛ℳ,𝑖
ℳ ∂𝛼1⁄ 𝜓𝑛ℳ,𝑖

ℳ ∂𝛼2⁄ ⋯ 𝜓𝑛ℳ,𝑖
ℳ ∂𝛼𝑛𝛂⁄]

1
⋮

𝑞𝑖 − 1
𝑞𝑖

𝑞𝑖 + 1
⋮
𝑛ℳ

11

After obtaining the Jacobian of the simulated eigenvalue and eigenvector at measured DOFs, D𝛂(𝜆𝑖) and D𝛂(𝛙𝑖
ℳ),

the analytical Jacobian in Eq. (9) can be calculated.

3.2 Jacobian of modal property difference formulation #2: eigenvector difference approach

For the eigenvector difference approach in Eq. (5), the optimization variable x in Eq. (7) is the stiffness updating

vector variable α. In order to derive the Jacobian of the eigenvector difference formulation in Eq. (5), a residual vector

function 𝐫(𝛂):ℝ𝑛𝛂 → ℝ𝑛ℳ∙𝑛modes is defined as follows:

𝐫(𝛂) = [

𝐫1(𝛂)
⋮

𝐫𝑛modes(𝛂)
] =

[

 (𝜆1

EXP − 𝜆1(𝛂)) 𝜆1
EXP⁄ ∙ 𝑤𝜆1

{𝛙−𝑞1,1
EXP,ℳ −𝛙−𝑞1,1

ℳ (𝛂)} ∙ 𝑤𝛙1

⋮

(𝜆𝑛modes
EXP − 𝜆𝑛modes(𝛂)) 𝜆𝑛modes

EXP ∙ 𝑤𝜆𝑛modes
⁄

{𝛙−𝑞𝑛modes
,𝑛modes

EXP,ℳ −𝛙−𝑞𝑛modes
,𝑛modes

ℳ (𝛂)} ∙ 𝑤𝛙𝑛modes]

 (21)

where 𝐫𝑖(𝛂):ℝ
𝑛𝛂 → ℝ𝑛ℳequals[(𝜆𝑖

EXP − 𝜆𝑖(𝛂)) 𝜆𝑖
EXP⁄ ∙ 𝑤𝜆𝑖; {𝛙−𝑞𝑖,𝑖

EXP,ℳ −𝛙−𝑞𝑖,𝑖
ℳ (𝛂)} ∙ 𝑤𝛙𝑖] , 𝑖 = 1…𝑛modes. Using

 𝐫(𝛂), the optimization problem in Eq. (5) for the eigenvector difference formulation can also be rewritten the same

as Eq. (7), with the objective function 𝑓(𝛂) = 𝐫(𝛂)𝐓𝐫(𝛂) . Again, the Jacobian for 𝑓(𝛂) , D𝛂𝑓 ∈ ℝ
1×𝑛𝛂 equals

D𝐫𝑓 ∙ D𝛂𝐫 from the chain rule. However, the residual vector 𝐫 has a different dimension for the MAC value

formulation. For the eigenvector difference formulation, the first Jacobian term is D𝐫𝑓 = 2𝐫
T ∈ ℝ1×(𝑛ℳ∙𝑛modes) .

Meanwhile, the second term is D𝛂𝐫 = [D𝛂𝐫1; D𝛂𝐫2; ⋯ D𝛂𝐫𝑛modes] ∈ ℝ
(𝑛ℳ∙𝑛modes)×𝑛𝛂, where each D𝛂𝐫𝑖 ∈ ℝ

𝑛ℳ×𝑛𝛂

can be formed as follows:

D𝛂𝐫𝑖 = [
−
D𝛂(𝜆𝑖(𝛂))

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖

−D𝛂 (𝛙−𝑞𝑖,𝑖
ℳ (𝛂)) ∙ 𝑤𝛙𝑖

] , 𝑖 = 1…𝑛modes (22)

The Jacobian of the i-th simulated eigenvalue and eigenvector at measured DOFs, D𝛂(𝜆𝑖(𝛂)) and D𝛂 (𝛙−𝑞𝑖,𝑖
ℳ (𝛂)),

have been provided in Eq. (13) and Eq. (20).

12

3.3 Jacobian of modal dynamic residual formulation

To derive the Jacobian of the modal dynamic residual formulation in Eq. (6), define a vector variable 𝐱 =

[𝛂; 𝛙1
𝒰; ⋯ 𝛙𝑛modes

𝒰] ∈ ℝ𝑛𝐱 with 𝑛𝐱 = 𝑛𝛂 + 𝑛𝒰 ∙ 𝑛modes and a residual vector function 𝐫(𝐱) : ℝ𝑛𝐱 → ℝ𝑁∙𝑛modes

as:

𝐫(𝐱) = [

𝐫1(𝐱)
⋮

𝐫𝑛modes(𝐱)
] =

[

 [𝐊(𝛂) − 𝜆1

EXP𝐌]{
𝛙1
EXP,ℳ

𝛙1
𝒰

} ∙ 𝑤1

⋮

[𝐊(𝛂) − 𝜆𝑛modes
EXP 𝐌]{

𝛙𝑛modes
EXP,ℳ

𝛙𝑛modes
𝒰

} ∙ 𝑤𝑛modes
]

 (23)

where 𝐫𝑖(𝐱):ℝ
𝑛𝐱 → ℝ𝑁 equals [𝐊(𝛂) − 𝜆𝑖

EXP𝐌]{
𝛙𝑖
EXP,ℳ

𝛙𝑖
𝒰

} ∙ 𝑤𝑖 , 𝑖 = 1…𝑛modes . Again, the Jacobian for 𝑓(𝐱) =

𝐫(𝐱)T𝐫(𝐱), D𝐱𝑓 ∈ ℝ
1×𝑛𝐱 equals D𝐫𝑓 ∙ D𝐱𝐫 from the chain rule. The first Jacobian term is D𝐫𝑓 = 2𝐫

T ∈ ℝ1×(𝑁∙𝑛modes)

while the second term is D𝐱𝐫 = [D𝐱𝐫1; D𝐱𝐫2; ⋯ D𝐱𝐫𝑛modes] ∈ ℝ
(𝑁∙𝑛modes)×𝑛𝐱 , where each D𝐱𝐫𝑖 ∈ ℝ

𝑁×𝑛𝐱 can be

expressed as follows:

D𝐱𝐫𝑖 = [D𝛂𝐫𝑖 D𝛙1𝒰
𝐫𝑖 ⋯ D𝛙𝑛modes

𝒰 𝐫𝑖], 𝑖 = 1…𝑛modes (24)

In Eq. (24), D𝛂𝐫𝑖 ∈ ℝ
𝑁×𝑛𝛂 can be derived considering 𝐊(𝛂) = 𝐊0 + ∑ 𝛼𝑗𝐊𝑗

𝑛𝛂
𝑗=1 from Eq. (1):

 D𝛂𝐫𝑖 = [𝐊1 {
𝛙𝑖
EXP,ℳ

𝛙𝑖
𝒰

} ∙ 𝑤𝑖 𝐊2 {
𝛙𝑖
EXP,ℳ

𝛙𝑖
𝒰

} ∙ 𝑤𝑖 ⋯ 𝐊𝑛𝛂 {
𝛙𝑖
EXP,ℳ

𝛙𝑖
𝒰

} ∙ 𝑤𝑖] , 𝑖 = 1…𝑛modes (25)

and D𝛙𝑗
𝒰𝐫𝑖 ∈ ℝ

𝑁×𝑛𝒰 , 𝑗 = 1…𝑛modes in Eq. (24) can be expressed as:

D𝛙𝑗
𝒰𝐫𝑖 = {

[𝐊(𝛂) − 𝜆𝑖
EXP𝐌] {

𝟎𝑛ℳ×𝑛𝒰

𝐈𝑛𝒰
} ∙ 𝑤𝑖 for 𝑗 = 𝑖

𝟎𝑁×𝑛𝒰 for 𝑗 ≠ 𝑖

 (26)

where 𝟎𝑛ℳ×𝑛𝒰 and 𝟎𝑁×𝑛𝒰 denote zero matrices and 𝐈𝑛𝒰 denotes the identity matrix, respectively.

4 Introduction of SMU package

Figure 1 shows the overall flowchart of the SMU package for structural model updating (Otsuki et al., 2021b). The

GitHub package contains MATLAB subroutines for model updating with example codes for several structures. The

main function StructModelUpdating performs a single run of structural model updating using one of the three

13

formulations selected by users. Analytical gradients for all three formulations are implemented in SMU. In order to

increase the chance of finding a better local minimum for these nonconvex optimization problems, randomly generated

starting points can be assigned by MultiRunModelUpdating. This script calls StructModelUpdating to conduct

multiple runs of model updating, i.e. performs gradient searches from all the random starting points. To solve each

corresponding optimization problem from one assigned starting point in the feasible region of variables, SMU uses

the optimization solvers lsqnonlin and fmincon available in the MATLAB optimization toolbox (MathWorks Inc.,

2019). The GitHub package provides a number of structural examples, currently including a 4-DOF shear model, an

18-DOF shear model, a steel pedestrian bridge, and a concrete building frame. Model updating is performed for

structures using both simulation and experiment data. Additionally, when users want to perform model updating of

their structure using the SMU package, users only need to provide the mass and stiffness information of the initial FE

model of the structure along with experimentally obtained eigenvalues and eigenvectors for a certain number of modes.

Figure 1. Overall flowchart of SMU Figure 2. Recommended MATLAB solvers and optimization
algorithms for each formulation

Figure 2 shows the recommended optimization solver and algorithm for the model updating formulations.

Note that the computational time of the FE model updating depends not only on the selection of optimization solvers

and algorithms but also the size of the optimization problem, the use of numerical or analytical Jacobian, and the

selection of formulations, which will be illustrated in two example structures in Section 5 and 6. When minimizing

StructModelUpdating

MultiRunModelUpdating
Assign multiple random

starting points

Solve optimization problem
from one starting point

Use multiple

starting points?

Finished all
starting points?

Select updating and

optimization options

Yes

No

No

Yes

Prepare structural mass and stiffness information,

and experimental modal properties

END

: Recommended

Levenberg-Marquardt

Trust-region-reflective

Interior-point

Trust-region-reflective

Sequential-quadratic-programming

Active-set

Solvers in MATLAB

optimization toolbox

Modal property difference formulation #1:

MAC value approach

Modal dynamic residual formulation

Modal property difference formulation #2:

Eigenvector difference approach

Model updating formualtions Optimization

algorithms

lsqnonlin

fmincon

14

least-squares objective functions, lsqnonlin is computationally much more efficient than fmincon and thus

recommended for a first try. The lsqnonlin solver minimizes the objective function 𝑓(𝐱) = 𝐫(𝐱)T𝐫(𝐱) = ‖𝐫(𝐱)‖2
2

in Eq. (7), i.e. the square of the ℒ2-norm of a residual vector function 𝐫(𝐱). The gradient, ∇𝑓(𝐱) ∈ ℝ𝑛𝐱 and Hessian,

∇2𝑓(𝐱) ∈ ℝ𝑛𝐱×𝑛𝐱 of 𝑓(𝐱): ℝ𝑛𝐱 → ℝ can be expressed as follows:

∇𝑓(𝐱) = 2[D𝐱𝐫]
T ∙ 𝐫(𝐱) (27)

∇2𝑓(𝐱) = 2[D𝐱𝐫]
T ∙ D𝐱𝐫 + 2∑𝑟𝑖(𝐱)

𝑛𝐫

𝑖=1

∇2𝑟𝑖
(28)

where D𝐱𝐫 ∈ ℝ
𝑛𝐫×𝑛𝐱 is defined as the Jacobian matrix of the scalar residuals (𝑟𝑖 , 𝑖 = 1⋯𝑛𝐫) with respect to the

optimization variables (𝑥𝑗 , 𝑗 = 1⋯𝑛𝐱). Neglecting the higher-order second term in ∇2𝑓(𝐱) , the optimization

algorithms adopted by lsqnonlin in MATLAB uses 2[D𝐱𝐫]
T ∙ D𝐱𝐫 to approximate the Hessian matrix. At each step

of the optimization process, by default, lsqnonlin numerically calculates the search gradient, ∇𝑓(𝐱), of the objective

function using the finite forward difference method (LeVeque, 2007). The numerically calculated gradient results are

affected by the difference ∆𝐱, i.e. the step size of x, and are more prone to inaccuracies. Meanwhile, instead of using

the numerically calculated gradient, lsqnonlin also accepts a user-provided analytical formulation of the gradient.

Given that the gradient simply equals the transpose of the Jacobian, i.e. ∇𝑓(𝐱) = (D𝐱𝑓)
T, the analytical gradient for

each formulation has been derived in Section 3 and implemented in SMU.

 At each iteration, the optimization solver evaluates the objective function value once or several times at points

near the current value of 𝐱 , which is called the number of function evaluations or F-count in the MATLAB

optimization toolbox (MathWorks Inc., 2019). When using the default numerical gradient, i.e., finite forward

difference method, each iteration needs to evaluate the objective function 𝑛𝐱 + 1 times in the neighbor of the current

𝐱. On the other hand, when the formulation of the analytical gradient is provided, the function evaluation happens

only once at each iteration. Therefore, when the computation of the analytical gradient itself is not expensive, the

analytical gradient can not only provide better accuracy, but also require less computational time due to the smaller

number of function evaluations. The advantage of using the analytical gradient is more significant when 𝑛𝐱 is large,

i.e., a large-scale optimization problem.

15

Two optimization algorithms available in lsqnonlin are the Levenberg-Marquardt (L-M) algorithm (Moré,

1978) and the trust-region-reflective (TRR) algorithm (Coleman and Li, 1996). The L-M algorithm is a combination

of the steepest decent and Gauss-Newton algorithms and is specially designed to solve nonlinear least-squares

problems. At every iteration, the algorithm first linearizes the objective function with respect to the corresponding

optimization variables. When the current solution is far from a local optimum, the L-M algorithm approaches the

steepest descent algorithm. On the other hand, when the current solution is close to a local optimum, the L-M algorithm

approaches the Gauss-Newton algorithm. The TRR algorithm approximates the original problem with a quadratic

subproblem within a small region around the current solution point, i.e. a trusted region. The quadratic subproblem is

formulated using the same gradient and approximated Hessian of the original problem. By solving the quadratic

subproblem using the two-dimensional subspace approach, a solution of the current subproblem can be obtained (Byrd

et al., 1988; Branch et al., 1999). If the decrease of the objective function evaluated at the current step is within the

prescribed upper and lower bounds, the solution will be accepted, and the algorithm will continue with the next

iteration. Otherwise, the trusted region at the current iteration will be adjusted, and the quadratic subproblem is solved

again with the new region. Iteratively, the optimization converges to a local minimum of the objective function.

 The L-M algorithm in the current version of SMU does not allow to set upper/lower bounds of optimization

variables. This can be a drawback in model updating using experimental data because appropriate upper/lower bounds

ensure a physically meaningful optimal solution. The TRR algorithm in MATLAB does allow setting the upper/lower

bounds of optimization variables; however, the TRR algorithm is not applicable for underdetermined problems, i.e.

when 𝑛𝐫 < 𝑛𝐱 . The MAC value approach for model updating (Eq. (3)) oftentimes provides an underdetermined

problem. For these reasons, we recommend to first try the L-M algorithm for the MAC value approach. Whereas for

the eigenvector difference approach (Eq. (5)) and the modal dynamic residual formulation (Eq. (6)), we recommend

to first try the TRR algorithm.

All the model updating formulations (Eqs. (3), (5), and (6)) in general provide non-convex optimization

problems. If the optimization problem is nonconvex, none of the existing algorithms in the MATLAB optimization

toolbox can guarantee the global optimality. Therefore, besides starting the search from random initial points in the

feasible region (MultiRunModelUpdating), it is also recommended to use different optimization algorithms and

compare the model updating results. Notice that the optimization algorithms available in lsqnonlin and fmincon

are different. Users may select fmincon when there is a particular interest in one of the algorithms available in

16

fmincon, such as the interior-point method, the sequential-quadratic-programming algorithm, and the active-set

method (MathWorks Inc., 2019).

5 Example 1: 18-story steel frame

5.1 Overview of the 18-story steel frame example

This section demonstrates an application example of SMU, using a numerical model based on a one-third scale 18-

story steel frame. The physical structure was constructed and tested at the E-Defense in 2014 (Figure 3(a)) (Suita et

al., 2015). The structure’s behavior represents that of typical steel high-rise buildings constructed in the 1980s to 1990s

in Japan. The plane dimension of each floor is 5×6 m, and the total height is 25.35 m. In this numerical study, the

overall structure is simplified to an 18-DOF shear model as shown in Figure 3(b).

(a) Front view (b) 18-DOF model

Figure 3. 18-story steel frame

The structural properties for this numerical study are presented in Table 1. It is assumed that the floor masses are

accurate and do not require updating. The initial stiffness values are calculated from nominal material properties. The

“actual” structure in this simulation corresponds to the assigned stiffness updating variable 𝛼𝑗
act for each story, which

is to be identified through model updating. The value of each updating variable represents the relative change of a

stiffness parameter from its initial/nominal value. The number of measured DOFs is assumed to be seven,

17

corresponding to the 1st, 4th, 7th, 9th, 12th, 15th, and 18th DOFs. Therefore, 𝑛ℳ = 7 and 𝑛𝒰 = 11. The number of

“experimental” modes available in this model updating is set as four (𝑛modes = 4). For the MAC value and the

eigenvector difference approaches, the number of optimization variables is 𝑛𝐱 = 𝑛𝛂 = 18. For the modal dynamic

residual formulation, the number is 𝑛𝐱 = 𝑛𝛂 + 𝑛𝒰 × 𝑛modes = 18+11×4 = 62.

Table 1. Structural properties of the 18-DOF model for this numerical study

Floor Weight

(kN)

Initial inter-story

stiffness (kN/m)

Actual inter-story

stiffness (kN/m)

Updating

variable

Actual updating

variable 𝛼𝑗
act

 18* 202 36,300 43,560 𝛼18 0.20

17 206 49,100 58,920 𝛼17 0.20

16 206 56,200 61,820 𝛼16 0.10

 15* 206 61,900 52,615 𝛼15 -0.15

14 206 66,000 69,300 𝛼14 0.05

13 206 71,200 60,520 𝛼13 -0.15

 12* 206 78,800 98,500 𝛼12 0.25

11 208 82,400 107,120 𝛼11 0.30

10 208 84,000 100,800 𝛼10 0.20

 9* 208 87,600 78,840 𝛼9 -0.10

8 208 93,800 117,250 𝛼8 0.25

 7* 208 96,300 110,745 𝛼7 0.15

6 208 99,000 84,150 𝛼6 -0.15

5 208 102,800 113,080 𝛼5 0.10

 4* 208 102,800 92,520 𝛼4 -0.10

3 208 107,300 101,935 𝛼3 -0.05

2 208 109,200 114,660 𝛼2 0.05

 1* 208 115,500 121,275 𝛼1 0.05

Note: (* measured/instrumented DOFs)

5.2 Procedure illustration for structural model updating using SMU

This section demonstrates the procedures for updating the 18-DOF model. The SMU MATLAB package can be

downloaded from GitHub (Wang et al., 2019b). The folder “Structural-Model-Updating\SMU” contains shared

MATLAB subroutines for structural model updating. This folder should be added into the MATLAB path first. The

MATLAB code that contains structural properties of this 18-DOF simulation study can be found in “Structural-Model-

Updating\Examples\EighteenStoryStructure\Simulation”. Figure 4 shows a part of the main script for model updating

of the 18-DOF model. The script at first sets the basic parameters of the structure. As mentioned, this example assumes

four “experimental” modes (𝑛modes = 4) are available; the measured DOFs are identified. These parameters can be

18

easily changed by users to see the effect on model updating results. The mass matrix 𝐌, initial stiffness matrix 𝐊0,

and influence matrix 𝐊𝑗 in Eq. (1) are constructed based on properties in Table 1. Upon construction or loading from

a data file, they are assembled in a MATLAB structure array structModel. Experimental eigenvalues 𝜆𝑖
EXPand

eigenvectors 𝛙𝑖
EXP,ℳ

 used in the model updating formulations – see Eq. (3), Eq.(5), and Eq. (6) – are then generated

using the “actual” values of the stiffness updating variables as listed in Table 1, and they are assigned to variables

%% Basic parameters

N = 18; % # of DOFs of the whole structure

n_modes = 4; % # of measured experimental modes

measDOFs = [1;4;7;9;12;15;18]; % Measured DOFs

⋮

--
%% Optimization settings
optimzOpts.toolBox = 'lsqnonlin'; % Optimization solver

optimzOpts.optAlgorithm = ' Levenberg-Marquardt'; % Optimization algorithm
optimzOpts.gradSel = 'on'; % on = analytical gradient; off = numerical

 % gradient

%% Model updating settings

updatingOpts.formID = 1; % 1: Modal property difference formulation with

 % MAC values

 % 2: Modal property diff. formulation with

 % eigenvectors

 % 3: Modal dynamic residual formulation

modeIndex = 1 : n_modes; % Indexes of simulated modes for matching exp. modes

updatingOpts.modeMatch = 2; % 1: Without forced matching

 % 2: With forced matching

updatingOpts.simModesForExpMatch = modeIndex;

if (updatingOpts.formID < 3.0)

 % Optimizaiton variable bounds for modal property difference formulations

 updatingOpts.x_lb = -ones(n_alpha, 1);

 updatingOpts.x_ub = ones(n_alpha, 1);

else

 % Optimizaiton variable bounds for modal dynamic residual formulations

 updatingOpts.x_lb = [-ones(n_alpha, 1); -2 * ones(num_unmeasDOFs * n_modes, 1)];

 updatingOpts.x_ub = [ones(n_alpha, 1); 2 * ones(num_unmeasDOFs * n_modes, 1)];

end

% Weighting factors

expModes.lambdaWeights = ones(n_modes, 1);

expModes.psiWeights = ones(n_modes, 1);

expModes.resWeights = ones(n_modes, 1);

%% MultiStart optimization

numRuns = 100;

randSeed = 5;

filename = ['EighteenStoryFrame_form' num2str(updatingOpts.formID) '_JAC' ...

 optimzOpts.gradSel '_' optimzOpts.optAlgorithm '.mat'];

MultiRunModelUpdating

Figure 4. Main script for model updating of the 18-DOF model in simulation

19

lambdaExp and psiExp_m, containing 𝜆𝑖
EXPand 𝛙𝑖

EXP,ℳ
, respectively. The script next calls the SMU subroutines to

perform structural model updating. Before calling the subroutines, options for optimization algorithms can be specified

by users. The example below uses lsqnonlin and the L-M algorithm with analytical gradient.

The formID = 1 means that the modal property difference formulation with the MAC value approach in

Eq. (3) is used. For the matching method between simulated and experimental modes, modeMatch and modeIndex

are assigned. When modeMatch is set as 1, at every iteration step, the program goes through remaining simulated

modes specified by modeIndex and pairs each experimental mode with a remaining simulated mode with the largest

MAC value; the identified pairs of 𝛙𝑖
EXP,ℳ

 and 𝛙𝑖
ℳ are then used to evaluate the objective function and search

gradient. When modeMatch is set as 2, the program strictly matches the first experimental mode with the first

simulated mode specified by modeIndex, the second experimental mode with the second one in modeIndex, etc.

The modeMatch = 2 setting should be used only when users are confident that all the lowest few modes are captured

by experimental data, i.e. there is no missing or unmeasured/undetected mode from the experimental data.

In this example, the formID = 1 is selected to use the MAC value formulation in Eq. (3). The upper and

lower bounds (x_lb and x_ub) are set as ±1 for the stiffness updating variables 𝛂. In case the modal dynamic residual

formulation in Eq. (6) is used (formID = 3), the upper and lower bounds are set as ±1 for the stiffness updating

variables 𝛂 and ±2 for the unmeasured entries of eigenvectors 𝛙𝑖
𝒰 . Note that the eigenvectors in simulation and

experiment should have been normalized so that the largest entry of 𝛙𝑖
EXP,ℳ

 equals 1. In this demonstration, the

weighting factors are all equal to 1 and are assigned to the corresponding field of the structure array expModes,

including 𝑤𝜆𝑖, 𝑤𝛙𝑖, and 𝑤𝑖. In practice, depending on the confidence in experimental data and the knowledge of the

structure’s dynamics, appropriate weighting factors should be specified. Next, the options for

MultiRunModelUpdating are specified. The 100 randomly generated starting points in the feasible regions are used.

The variable randSeed is the random seed value for the MATLAB function “rng”. The variable filename will be

used for the result file name (.mat file) that contains model updating results for all the starting points. Upon running

the code, the iteration history will be shown in the MATLAB Command Window, and the result file (.mat file) will

be automatically generated. For this study, we use a PC with an Intel i7-7700 CPU and 16 GB RAM.

20

5.3 Model updating results: MAC value approach

For this simulation, the MAC value approach in Eq. (3) provides 𝑛𝐫 = 2 ∙ 𝑛modes = 2 ∙ 4 = 8 and 𝑛𝐱 = 𝑛𝛂 = 18.

Hence, 𝑛𝐫 < 𝑛𝐱, i.e. the optimization problem is underdetermined; the TRR algorithm is not applicable, and the L-M

algorithm is used to solve the optimization problem. When using MATLAB lsqnonlin with the L-M algorithm in

the current version of SMU, the optimal result sets that are out of the assigned bounds are rejected and the

corresponding starting point is replaced with the next randomly generated point that achieves valid optimal results.

For comparison, both numerical and analytical gradients are used. For each optimum parameter set 𝛂∗, the relative

error of the stiffness updating variables is calculated as:

𝑒𝑖 =
|𝛼𝑖

∗ − 𝛼𝑖
act|

1 + 𝛼𝑖
act × 100%, 𝑖 = 1⋯𝑛𝛂 (29)

where 𝛼𝑖
∗ is the i-th entry of 𝛂∗ and 𝛼𝑖

act is the actual value as listed in Table 1. Then, the average relative error 𝑒avg

is calculated for this optimum parameter set 𝛂∗ as:

𝑒avg =
1

𝑛𝛂
∑𝑒𝑖

𝑛𝛂

𝑖=1

 (30)

 Figure 5(a) plots the 𝑒avg of the optimum 𝛂∗ from all of the 100 starting points. In this plot, many of the optimization

searches end with a solution that has a large relative error 𝑒avg; some relative errors are close to or even above 30%.

The reason is that in this simulation, the maximum number of search iterations from each starting point is set as the

default value of 400 by SMU. If desired, the number can be easily increased for better accuracy while consuming

longer runtime. Among 100 sets of the optimum vector variable 𝛂∗, the best parameter set is chosen as the one

corresponding to the minimum objective function value. Figure 5(b) shows the relative error of this best parameter

set. Both numerical and analytical gradients achieve a solution close to the actual value of updating variables, but the

analytical gradient obtains better accuracy. The total computational time is 475.8 seconds when using the numerical

gradient while it is 386.9 seconds for the analytical gradient.

21

(a) Average relative errors of updating variables (b) Relative errors of updated stiffnesses

Figure 5. Model updating results of 18-DOF model by MAC value approach using L-M algorithm with numerical
and analytical gradients

5.4 Model updating results: Eigenvector difference approach

The eigenvector difference approach in Eq. (5) provides 𝑛𝐫 = 𝑛ℳ ∙ 𝑛modes = 7 ∙ 4 = 28 and 𝑛𝐱 = 𝑛𝛂 = 18. Hence,

𝑛𝐫 > 𝑛𝐱 , i.e. the optimization problem is determined. Therefore, the TRR algorithm is applicable and used as

recommended in Figure 2. Both numerical and analytical gradients are studied for comparison. Figure 6(a) shows the

average relative error for each starting point. Figure 6(b) plots the relative error of the stiffness values for the minimum

objective function value among 100 optimal sets. It can be concluded that for this relatively simple example, the

eigenvector difference approach, using both numerical and analytical gradients, is able to identify accurate stiffness

values of the model. The total computational time is 49.2 seconds when using the numerical gradient and 23.6 seconds

for the analytical gradient. Compared to the MAC value approach, the eigenvector difference approach achieves higher

accuracy and much better computational efficiency.

(a) Average relative errors of updating variables (b) Relative errors of updated stiffnesses

Figure 6. Model updating results of 18-DOF model by eigenvector difference approach using TRR algorithm with
numerical and analytical gradients

22

5.5 Model updating results: Modal dynamic residual formulation

The modal dynamic residual formulation in Eq. (6) provides 𝑛𝐫 = 𝑛𝑁 ∙ 𝑛modes = 18 ∙ 4 = 72 and 𝑛𝐱 = 𝑛𝛂 + 𝑛𝒰 ∙

𝑛modes = 18 + 11 ∙ 4 = 62. Hence, 𝑛𝐫 > 𝑛𝐱, i.e. the optimization problem is determined. To compare the different

optimization algorithms, the L-M algorithm and the TRR algorithm are both used with the analytical gradient. Figure

7(a) shows the average relative error of the updated result from each starting point. Compared to the L-M algorithm,

several optimization searches using the TRR algorithm fail to converge at the correct value. Figure 7(b) plots the best

solution among 100 optimal sets. The accuracy of the updated results is better than the MAC value approach and

nearly the same as the eigenvector difference approach. The total computational time is 265.0 seconds for the L-M

algorithm and 45.3 seconds for the TRR algorithm.

(a) Average relative errors of updating variables (b) Relative errors of updated stiffnesses

Figure 7. Model updating results of 18-DOF model by modal dynamic residual formulation using L-M and TRR
algorithm with analytical gradient

In general, with eigenvectors 𝛙𝑖
𝒰 among the optimization variables, the modal dynamic residual formulation can be

computationally expensive when the number of unmeasured DOFs is large. In addition, as aforementioned, because

the formulation does not directly minimize the discrepancy of modal properties, the updated model may provide modal

properties that are more noticeably different from experimental data. Our overall experience is that the modal dynamic

residual formulation usually does not perform well with larger-scale experimental data. Therefore, while for

completeness the formulation is investigated in this section, it will not be studied further in the next section.

23

6 Example 2: concrete building frame

6.1 Overview of the concrete building frame example

The second structure studied in this research is a concrete building frame (Figure 8(a)), which simulates a full-scale

test structure in the Structural Engineering and Materials Laboratory on the Georgia Tech campus. The test frame

structure is representative of low-rise reinforced concrete office buildings in the central and eastern United States built

in the 1950s-1970s (Dong et al., 2016). The structure consists of a set of four identical two-story two-bay concrete

frames. Each frame was constructed with a gap from its neighboring frames, allowing free in-plane longitudinal

movement and can thus be modeled independently from the other frames. Frame #1 is used in this study. The columns

and beams for frame #1 are modeled with frame elements in SAP2000 (Figure 8(b)).

#4

Collapse prevention frames

#3
#2 #1

(a) Front view of the four testing frames,
enveloped by two collapse-prevention frames

(b) Model of the 2-story 2-bay concrete building frame and
sensor instrumentation

Figure 8. Concrete building frame (height in z: 2 × 3.66 m; length in x: 2 ×5.49 m; slab width in y: 2.74 m)

Corresponding to dense sensor instrumentation, seven segments are allocated per column on each story, and

twelve segments per beam in each bay. In SAP2000 to ensure a stiffness contribution from both concrete and rebar,

along every column or beam segment one frame element is assigned for the concrete material and another frame

element is assigned for the steel reinforcement. Each floor slab is meshed into 175 shell elements. In total, the FE

model of the concrete building frame has 2,302 DOFs. The modeling software SAP2000 assigns non-zero

24

concentrated mass only to the translational DOFs. As a result, the mass matrix (M) is a diagonal matrix whose diagonal

entries associated with rotational DOFs equal zero.

Figure 8(b) also shows the accelerometer instrumentation for this simulation study, and the corresponding

measurement directions. A total of 43 DOFs are measured, i.e. the length of 𝛙𝑖
EXP,ℳ

 and 𝛙𝑖
ℳ(𝛂) is 𝑛ℳ = 43. The

accelerometers measure longitudinal and vertical vibration, i.e. x and z directions. Thus, only in-plane vibration mode

shapes, i.e. in the x-z plane, can be extracted from measurement data. To avoid the side effect of out-of-plane mode

shapes (in the y-z plane) on the FE model updating, the vertical and transverse DOFs (y and z direction) at both ends

of the three transverse beams (along the y direction) on each slab are constrained. Lastly, at the bottom of the three

columns below the first slab, all six DOFs are constrained to represent an ideal fixed support.

This study updates twelve elastic moduli of concrete members, denoted as E1 ~ E12 in Figure 8(b). In the first

story, E1 ~ E3 represent the concrete elastic moduli of members in the three columns; E7 and E8 represent the concrete

elastic moduli of longitudinal beam members (along the x direction); and E11 represents the concrete elastic moduli of

the first slab and the associated transverse beam members (along the y direction). Similarly, other moduli for the

second story can be found in Figure 8(b). While this study only involves simulation, the selection of moduli

corresponds to different concrete pours during the construction, and thus is in preparation for future model updating

of the as-built structure with experimental data. Compared to concrete, the estimated elastic modulus of steel

reinforcement is considered to be sufficiently accurate; therefore, it is not being updated in this study.

For all the concrete moduli being updated, Table 2 lists the nominal and actual values. In total, there are 12

updating variables for this model updating, i.e. 𝑛𝛂 = 12. The column 𝛼𝑖
act in Table 2 lists the actual values of 𝛂, i.e.

the ideal solutions to be identified through FE model updating. For the model updating of this concrete structure this

paper presents the results of the modal property difference formulations with the MAC value approach (Eq. (3)) and

the eigenvector difference approach (Eq. (5)). It is assumed that the first three vibration modes (𝑛modes = 3) are

available. The upper and lower bounds of 𝛂 are set to be 1 and -1, respectively. The weightings are set as 𝑤𝜆𝑖 = 1 and

𝑤𝛙𝑖 = 1, respectively. The optimization process is initiated from 100 random starting points within the bounds of 𝛂.

The maximum number of iterations is set as 1000. Same as the simulation for the 18-DOF model, a PC with an Intel

i7-7700 CPU and 16 GB RAM is used.

25

Table 2. Structural properties of the concrete building frame model for this numerical study

Stiffness parameters Nominal value

(N/mm2)

Actual value

(N/mm2)

Updating

variables

Actual updating

variable 𝛼𝑗
act

Elastic moduli of

concrete members

E1 26890 24201 𝛼1 -0.10

E2 25511 30613 𝛼2 0.20

E3 25511 30613 𝛼3 0.20

E4 22063 20960 𝛼4 -0.05

E5 22063 26476 𝛼5 0.20

E6 22063 25373 𝛼6 0.15

E7 22063 25373 𝛼7 0.15

E8 22063 24270 𝛼8 0.10

E9 23442 21098 𝛼9 -0.10

E10 23442 19926 𝛼10 -0.15

E11 22063 26476 𝛼11 0.20

E12 23442 26958 𝛼12 0.15

6.2 Model updating results: MAC value approach

The MAC value approach (Eq. (3)) in this simulation provides 𝑛𝐫 = 2 ∙ 𝑛modes = 2 ∙ 3 = 6 while 𝑛𝐱 = 𝑛𝛂 = 12. As

a result, 𝑛𝐫 < 𝑛𝐱 and the problem is underdetermined; the TRR algorithm is not applicable and the L-M algorithm is

used. Recall that the L-M algorithm in the current version of SMU does not allow upper/lower bounds. Therefore,

when the converged optimal solution is out of the range [-1,1], the solution was discarded, and a new starting point

was assigned. For comparison, both numerical and analytical gradients are used during optimization searches. For

each of the 100 successful runs, Figure 9(a) displays the average relative error eavg (Eq. (30)) for all 𝑛𝛂 = 12 stiffness

updating variables after discarding ten optimal result sets that are out of the [-1,1] bounds during the optimization

process. Similar to the case for the MAC value approach of the 18-DOF model, a large number of optimization

searches end with a large relative error 𝑒avg. For the solution set that achieves the minimum objective function value

among the 100 starting points, Figure 9(b) plots the relative error 𝑒𝑖 of each stiffness parameter. The figure shows that

the obtained stiffness parameter values are not reasonable, with the maximum relative error larger than 13% using the

numerical gradient and 6.5% using the analytical gradient. It took 18 hours and 58 minutes to obtain the 100 optimal

result sets that are within the bounds when using the numerical gradient, while it took 22 hours and 58 minutes when

using the analytical gradient. While the analytical gradient provides more accurate solution, due to the computation

cost of the analytical gradient for the MAC value approach, the numerical gradient required less computational time

than the analytical gradient in this example. In conclusion, for this concrete frame structure, the MAC value approach

26

cannot provide reasonable FE model updating results using either the numerical gradient or analytical gradient during

the optimization process.

(a) Average relative errors of updating variables (b) Relative errors of updated stiffness

parameters

Figure 9. Model updating results for the concrete building frame by MAC value approach using the L-M

algorithm with numerical and analytical gradients

 Further study on the nonconvexity of the MAC value approach is conducted, using solution A in Figure 9(a).

The average relative error of solution A is 4.71% and the objective function equals 4.71×10-10. While it is impossible

to visualize 𝑓(𝛂) in 12-dimensional space, Figure 10 displays a walk from solution A, denoted as 𝛂A, to the actual

value 𝛂act shown in Table 2, along a hyperline in ℝ12 space. The hyperline is defined with a scalar 𝜃; along the

hyperline, the values of updating variables are 𝛂(𝜃) = 𝛂A + 𝜃 ∙ (𝛂
act − 𝛂A). When 𝜃 = 0, 𝛂 = 𝛂A; when 𝜃 = 1,

𝛂 = 𝛂act. Accordingly, the y-axis represents the MAC value objective function (Eq. (3)) evaluated at different values

of 𝛂 along the hyperline:

𝑓(𝛂(𝜃)) = 𝑓(𝛂A + 𝜃 ∙ (𝛂
act − 𝛂A)) (31)

Had 𝑓(𝛂) been convex on 𝛂, 𝑓(𝛂(𝜃)) should also be convex on 𝜃 (see page 68 in the 7th Ed. of reference (Boyd and

Vandenberghe, 2004)). Figure 10 clearly shows that there are two valleys along the hyperline, located at 𝜃 = 0 and 1,

respectively. Therefore, the optimization problem in Eq. (3) for the MAC value approach is confirmed to be non-

convex, and off-the-shelf local optimization algorithms cannot ensure global optimality.

27

Figure 10. Hyperline walk between solution A to the global optimum

6.3 Model updating results: eigenvector difference approach

For the eigenvector difference formulation in Eq. (5), the residual vector length 𝑛𝐫 equals 𝑛ℳ ∙ 𝑛modes = 43 ∙ 3 =

129. As a result, with the number of optimization variables 𝑛𝐱 still equal to 𝑛𝛂 = 12, the problem is determined and

TRR algorithm is used. The numerical and analytical gradients are utilized for comparison. Figure 11(a) plots the

average relative error 𝑒avg of the stiffness updating variables for 100 random searches. Many starting points end with

a large error using the numerical gradient while only three starting points converged with large errors using the

analytical gradient. For each gradient case, the best solution is again selected as the one with the minimum objective

function value among 100 result sets. The relative errors of the updated stiffness parameters for the best solution are

plotted in Figure 11(b). Both the numerical and analytical gradient provide accurate updating results, and the analytical

gradient provides no errors. To obtain the 100 optimal solutions, it took 22 hours 38 minutes using the numerical

gradient while it took only 52 minutes using the analytical gradient.

(a) Average relative errors of updating variables (b) Relative errors of updated stiffness parameters

Figure 11. Model updating results for the concrete building frame by eigenvector difference approach using the

TRR algorithm with numerical and analytical gradients

28

 Similar to the MAC value approach, the nonconvexity of the eigenvector difference approach is studied using

solution B in Figure 11(a). The average relative error of solution B is 20.81% and the objective function equals 0.0054.

Figure 12 displays a walk from solution B to the global optimum along a hyperline in ℝ12 space. Figure 12 clearly

shows two valleys along the hyperline, indicating the non-convexity of the eigenvector difference approach in Eq. (5).

Hence, global optimality cannot be ensured using off-the-shelf local optimization algorithms and multiple random

starting points are necessary to obtain a better solution.

Figure 12. Hyperline walk between solution B to the global optimum

In summary, for model updating of the concrete building frame, the MAC value approach could not provide a

set of optimal results with acceptable accuracy using either the numerical or analytical gradient during the optimization

process. As for the eigenvector difference formulation, using the analytical gradient not only provides more accurate

model updating results in general, but also can find the correct updating parameter values more efficiently. The study

demonstrates the advantage of using the analytical gradient versus the numerical gradient.

7 Conclusions

An open-source MATLAB package for structural model updating called “SMU” is developed and shared with the

research community. Current version 1.1 supports three model updating formulations in frequency domain, namely (i)

the MAC (modal assurance criterion) value approach (Eq. (3)), (ii) the eigenvector difference approach (Eq. (5)), and

(iii) the modal dynamic residual formulation (Eq. (6)). The first two belong to the family of modal property difference

formulations. To facilitate the optimization process, analytical gradients of the formulations are derived and

implemented in SMU. Considering that the objective functions of the model updating formulations are nonconvex,

randomly generated starting points are adopted to increase the chance of finding the global minimum.

29

Among several structural examples provided in SMU, this paper demonstrates the SMU functionality using

an 18-DOF model and a concrete building frame model in simulation. The MAC value approach and the modal

dynamic residual formulation can correctly identify stiffness values for a relatively simpler structural model (the 18-

DOF model), but may fail to provide reasonable results and increase computational cost when the complexity of a

structure increases (as in the concrete building frame). The eigenvector difference approach can correctly update

stiffness values for both simpler and more complex structures with better computational efficiency than the MAC

value approach and the modal dynamic residual formulation. Furthermore, this study demonstrates the advantage of

using the analytical gradient versus the numerical gradient. Using the analytical gradient during the optimization

process in general not only provides more accurate model updating results, but also saves computational time,

especially for a large-scale structure. For the concrete building frame, the computational time using the analytical

gradient for the eigenvector difference approach is 52 minutes while it is 22 hours 38 minutes using the numerical

gradient. For future work, different formulations and more structural examples are to be added. Moreover, the latest

MATLAB 2021b version changed the Levenberg-Marquardt algorithm to support the bounds of optimization variables,

and this change will be reflected in the SMU package in the future.

Funding

This research was partially funded by the National Science Foundation (CMMI-1150700 and CMMI-1634483). The

first author received scholarship support from the Nakajima Foundation. Any opinions, findings, and conclusions

expressed in this publication are those of the authors and do not necessarily reflect the view of the sponsors.

References

Bakir PG, Reynders E and De Roeck G (2008) An improved finite element model updating method by the global

optimization technique ‘Coupled Local Minimizers’. Computers & Structures 86(11-12): 1339-1352.

Boyd SP and Vandenberghe L (2004) Convex Optimization. Cambridge, UK: Cambridge University Press.

Branch MA, Coleman TF and Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-

constrained minimization problems. SIAM Journal on Scientific Computing 21(1): 1-23.

Byrd RH, Schnabel RB and Shultz GA (1988) Approximate solution of the trust region problem by minimization over

two-dimensional subspaces. Mathematical programming 40(1-3): 247-263.

Chatzi EN and Smyth AW (2009) The unscented Kalman filter and particle filter methods for nonlinear structural

system identification with non‐collocated heterogeneous sensing. Structural Control and Health Monitoring

16(1): 99-123.

30

Coleman TF and Li Y (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM

Journal on Optimization 6(2): 418-445.

Dong X, Liu X, Wright T, et al. (2016) Validation of wireless sensing technology densely instrumented on a full-scale

concrete frame structure. In: Proceedings of International Conference on Smart Infrastructure and

Construction (ICSIC), Cambridge, UK, pp.143-148.

Dong X and Wang Y (2018) Modal property difference formulations and optimization algorithm comparison towards

FE model updating. In: Proceedings of SPIE 2018, Smart Structures and Materials + Nondestructive

Evaluation and Health Monitoring Denver, CO, USA, pp.1059828.

Dong X and Wang Y (2019) Finite element model updating of a steel pedestrian bridge model. In: ASCE International

Conference on Computing in Civil Engineering, Atlanta, GA, USA, pp.397-404.

Doucet A and Tadić VB (2003) Parameter estimation in general state-space models using particle methods. Annals of

the institute of Statistical Mathematics 55(2): 409-422.

Farhat C and Hemez FM (1993) Updating finite element dynamic models using an element-by-element sensitivity

methodology. AIAA Journal 31(9): 1702-1711.

Fox R and Kapoor M (1968) Rates of change of eigenvalues and eigenvectors. AIAA journal 6(12): 2426-2429.

Friswell MI and Mottershead JE (1995) Finite element model updating in structural dynamics. Dordrecht, Netherlands:

Kluwer Academic Publishers.

Hofmeister B, Bruns M and Rolfes R (2019) Finite element model updating using deterministic optimisation: A global

pattern search approach. Engineering Structures 195: 373-381.

Kane M, Zhu D, Hirose M, et al. (2014) Development of an extensible dual-core wireless sensing node for cyber-

physical systems. In: Proceedings of SPIE 2014, Nondestructive Characterization for Composite Materials,

Aerospace Engineering, Civil Infrastructure, and Homeland Security, San Diego, CA, USA, pp.90611U.

Kosmatka JB and Ricles JM (1999) Damage detection in structures by modal vibration characterization. ASCE Journal

of Structural Engineering 125(12): 1384-1392.

LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-

dependent problems. Philadelphia, PA, USA: SIAM.

Li D, Dong X and Wang Y (2018) Model updating using sum of squares (SOS) optimization to minimize modal

dynamic residuals. Structural Control and Health Monitoring 25(12): e2263.

Lynch JP and Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health

monitoring. The Shock and Vibration Digest 38(2): 91-128.

MathWorks Inc. (2019) Optimization Toolbox™ User's Guide. Natick, MA, USA: MathWorks Inc.

Moller PW and Friberg O (1998) Updating large finite element models in structural dynamics. AIAA journal 36(10):

1861-1868.

Moré J (1978) The Levenberg-Marquardt algorithm: Implementation and theory. Numerical Analysis. Berlin,

Germany: Springer pp.105-116.

Nelson RB (1976) Simplified calculation of eigenvector derivatives. AIAA journal 14(9): 1201-1205.

31

Otsuki Y, Li D, Dey SS, et al. (2021a) Finite element model updating of an 18-story structure using branch-and-bound

algorithm with epsilon-constraint. Journal of Civil Structural Health Monitoring. doi: 10.1007/s13349-020-

00468-3 (in print).

Otsuki Y, Li D, Xinjun D, et al. (2021b) SMU – an open-source MATLAB package for structural model updating. In:

Proceedings of the 10th International Conference on Bridge Maintenance, Safety and Management

(IABMAS), Sapporo, Japan, pp.1621-1628.

Salawu OS (1997) Detection of structural damage through changes in frequency: A review. Engineering Structures

19(9): 718-723.

Sato T and Qi K (1998) Adaptive H∞ filter: its application to structural identification. Journal of Engineering

Mechanics 124(11): 1233-1240.

Suita K, Suzuki Y and Takahashi M (2015) Collapse behavior of an 18-story steel moment frame during a shaking

table test. International Journal of High-Rise Buildings 4(3): 171-180.

Teughels A, Maeck J and De Roeck G (2002) Damage assessment by FE model updating using damage functions.

Computers & Structures 80(25): 1869-1879.

Wang Y, Dong X and Li D (2019a) A non-convexity study in finite element model updating. In: Proceedings of the

9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-9), St.

Louis, MO, USA, pp.24-29.

Wang Y, Dong X, Li D, et al. (2019b) SMU: MATLAB Package for Structural Model Updating, version 1.1. Available

at: https://github.com/ywang-structures/Structural-Model-Updating.

Weng S, Xia Y, Xu Y-L, et al. (2011) Substructure based approach to finite element model updating. Computers &

Structures 89(9-10): 772-782.

Yang JN, Lin SL, Huangl HW, et al. (2006) An adaptive extended Kalman filter for structural damage identification.

Structural Control & Health Monitoring 13(4): 849-867.

Yuen KV (2012) Updating large models for mechanical systems using incomplete modal measurement. Mechanical

Systems and Signal Processing 28: 297-308.

Zhang QW, Chang CC and Chang TYP (2000) Finite element model updating for structures with parametric

constraints. Earthquake Engineering & Structural Dynamics 29(7): 927-944.

Zhang Z and Sun C (2020) Structural damage identification via physics-guided machine learning: a methodology

integrating pattern recognition with finite element model updating. Structural Health Monitoring. doi:

10.1177/1475921720927488 (in print).

Zhu D, Dong X and Wang Y (2016) Substructure stiffness and mass updating through minimization of modal dynamic

residuals. ASCE Journal of Engineering Mechanics 142(5): 04016013.

Zhu H, Li J, Tian W, et al. (2021) An enhanced substructure-based response sensitivity method for finite element

model updating of large-scale structures. Mechanical Systems and Signal Processing 154: 107359.

https://github.com/ywang-structures/Structural-Model-Updating

