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Abstract: Structural model updating techniques optimize model parameter values for improving 

the predication accuracy of a numerical model. Formulated as optimization problems, the objective 

of these techniques is to minimize the difference between model prediction and the experimental 

data. Most of these optimization problems are nonconvex, and consequently, the global optimum 

is very hard to solve. The sum of squares (SOS) approach and its sparse variant have been reported 

to relax a nonconvex polynomial optimization problem into a convex semidefinite programming 

(SDP) problem, which is more readily solvable. However, the corresponding convex SDP problem 

may fail the Slater condition qualification. The failure increases the difficulty for numerical 

algorithms, e.g. the interior point method, to solve the SDP problem. This paper proposes to utilize 

the facial reduction technique to regularize an SDP problem which fails the Slater condition 

qualification. In addition, the regularized SDP problem has smaller size, which helps to improve 

the computation efficiency. The performance of the proposed model updating approach is 

evaluated through a plane truss example.    
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1 Introduction 

Finite element (FE) models are widely used to simulate the behaviors of civil structures. However, 

the structural responses simulated by an FE model are usually different from the measured results 

obtained in the field. The difference can be caused by many reasons, such as inaccurate material 

properties and idealized boundary conditions adopted in the FE model. Consequently, it is 

desirable to update the model parameter values so that the predicted behaviors better match the 

experimental results. 

Considerable research efforts have been devoted to FE model updating using modal properties of 

structures, including natural frequencies and mode shapes. One common approach is to find a 

suitable set of model parameters through minimizing an objective function that measures the 

difference between the simulated and experimental results. These optimization-based model 

updating techniques have been utilized for parameter identification, condition assessment, and 

damage detection with limited success [1-5]. Some studies attempted to minimize the dynamic 

force/input residual of the equations of motion in frequency domain, which is the difference 

between the two sides of the equation and calculated using updated model matrices and measured 

dynamic forces and displacements [6, 7]. When evaluated at resonance frequencies and assuming 

normal modes, the dynamic force vanishes and the input residual simplifies to the modal dynamic 

residual of the generalized eigenvalue equation [8-10]. Typically, these formulated optimization 

problems for model updating are nonconvex, which means there can be unknown number of local 

minima over the feasible domain. Traditional optimization algorithms, e.g. the gradient based 

algorithm, can be easily trapped at a local minimum and fail to find the global solution. Attempts 

have been made to seek the global optimum of the model updating problems. Most of these global 

optimization methods exploit either the stochastic search [11], or gradient search from multiple 
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starting points [12]. The nature of these optimization methods is heuristic and cannot guarantee 

global optimality. 

In this paper, the sum-of-squares (SOS) approach is proposed to solve the FE model updating 

problem. It has been shown that if an optimization problem consists of only polynomials, the SOS 

approach and its variant can be applied to approximate the nonconvex problem with a convex 

semidefinite programming (SDP) problem. The re-formulated SDP problem can be solved 

efficiently by many existing algorithms, such as the interior-point method. As the SDP problem is 

convex, the solution is guaranteed to be globally optimal. The SOS approach has made significant 

impact on global optimization in many different fields, for example tensor decomposition [13, 14], 

computational geometry [15], and control theory [16].  

In the field of FE model updating, the authors have shown the effectiveness of the SOS approach 

in identifying correct parameter values of structural models. In [17], the authors applied the 

standard SOS approach for FE model updating by minimizing modal dynamic residuals. Both 

numerical simulation and experimental study of a four-story shear frame structure have shown that 

the standard SOS approach can reliably solve the global solution to the FE model updating problem. 

However, despite the appeal of yielding global optimality, the computational complexity of the 

SOS approach grows rapidly when the polynomial optimization problem has a large number of 

variables and/or high degree [18, 19]. One method to alleviate the difficulty is to exploit the 

sparsity in the polynomial optimization problem and eliminate some redundant constraints in the 

formulated SDP problem.  The so-called sparse SOS approach is shown to be able to efficiently 

solve a 2D truss updating example that the standard SOS approach cannot [20]. Nevertheless, it is 

discovered that the sparse SOS approach still requires excessively long time to solve some 



4 

 

moderately-sized problems, or encounters significant difficulty when solving relatively large 

problems. 

Building upon previous work, this paper proposes a new technique that can much more efficiently 

solve the SDP problems arising from both the standard and the sparse SOS approaches. Although 

effectiveness of these approaches on global optimality has been demonstrated, it turns out that the 

SDP problems formulated by both the standard and the sparse SOS approaches may fail to satisfy 

the Slater condition (strict feasibility), which plays an important role in the convergence of most 

interior-point solvers [21]. The failure to satisfy the Slater condition increases the difficulty of 

finding the optimal solution of the SDP problem using numerical algorithms. In this paper, we 

adopt facial reduction technique to overcome this challenge. The technique restricts such an SDP 

problem onto a feasible set with lower dimension and yields an equivalent SDP problem for which 

there are strictly feasible points. The smaller equivalent SDP can then be solved by a numerical 

solver in a more stable manner. 

The rest of this paper is organized as follows. Section 2 introduces the formulation of the modal 

dynamic residual approach for model updating. This formulation entails an optimization problem 

whose objective function and inequality constraints are all polynomials. Section 3 covers the SOS 

approach for relaxing the nonconvex polynomial problems into convex SDP problems and 

investigates the sparsity in the SOS approach. In Section 4, we describe the facial reduction 

algorithms for regularizing SDP problems which fail the Slater condition qualification, 

emphasizing a practical algorithm which only inspects constraints of SDP problems. In Section 5, 

we validate the proposed approach through simulation of a plane truss structure. Finally, Section 

6 provides a summary and discussion. 
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2 Modal dynamic residual approach for model updating 

In this paper, we assume only the stiffness values of a model require updating. Consider a linear 

structure with 𝑁 degrees of freedom (DOFs). The stiffness matrix 𝐊 ∈ ℝ𝑁×𝑁 of the structure can 

be parameterized by an updating vector 𝛉 ∈ ℝ𝑛𝛉: 

𝐊(𝛉) = 𝐊0 +∑𝜃𝑖𝐊𝑖

𝑛𝛉

𝑖=𝟏

 (1) 

 

where 𝐊0 ∈ ℝ
𝑁×𝑁  is the initial structural stiffness matrix, and 𝐊𝑖 ∈ ℝ

𝑁×𝑁  is the ith influence 

matrix corresponding to the updating parameter 𝜃𝑖. In theory, given a pair of resonance frequency 

𝜔 and mode shape vector 𝛙 ∈ ℝ𝑁 , only the actual/correct value of updating parameter 𝛉∗ can 

provide the stiffness matrix 𝐊(𝛉∗) that satisfies the generalized eigenvalue equation: 

[𝐊(𝛉∗) − 𝜔2𝐌]𝛙 = 𝟎 (2) 

 

Based on this concept, the parameter 𝛉 can be updated using the experimentally measured modal 

properties as a baseline. To acquire modal properties of the structure, sensors are instrumented at 

specific locations of the structure. In general, not all DOFs of the structure can be measured by 

sensors. The set of DOFs measured by sensors is denoted as ℳ, and the set of the remaining DOFs 

is denoted as 𝒰. The number of DOFs in the set ℳ is denoted as 𝑛ℳ, and similarly the number of 

DOFs in the set 𝒰 is denoted as 𝑛𝒰 . The measured modal properties of the structure usually 

include the first several resonance frequencies, 𝛚 ∈ ℝ𝑛modes , and measured entries 𝛙ℳ ≔

(𝛙ℳ,1
T , 𝛙ℳ,2

T ,⋯ ,𝛙ℳ,𝑛modes
T )

T
∈ ℝ𝑛ℳ⋅𝑛modes×1 in corresponding mode shapes.  
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The model updating problem can be stated as: given 𝑛modes  number of measured resonance 

frequencies, 𝜔𝑖, 𝑖 = 1, 2,⋯ , 𝑛modes, and corresponding mode shapes with only entries measured 

by sensors 𝛙ℳ,𝑖, find the actual/correct value for the unknown stiffness parameter 𝛉. Treating the 

stiffness parameter 𝛉 ∈ ℝ𝑛𝛉  and the unmeasured entries 𝛙𝒰 ≔ (𝛙𝒰,1
T , 𝛙𝒰,2

T , ⋯ ,𝛙𝒰,𝑛modes
T )

T
∈

ℝ𝑛𝒰⋅𝑛modes×1 in the mode shapes as optimization variables, the model updating problem can be 

formulated by minimizing following residual 𝑟: 

minimize
𝛉, 𝛙𝒰 

 𝑟 = ∑ ‖[𝐊(𝛉) − 𝜔𝑖
2𝐌] {

𝛙ℳ,𝑖

𝛙𝒰,𝑖
}‖
2

2
𝑛modes

𝑖=1

 
(3) 

subject to 𝐋𝛉 ≤ 𝛉 ≤ 𝐔𝛉 

 

Here ‖∙‖2 denotes the ℓ2-norm; constant vectors 𝐋𝛉 and 𝐔𝛉 denote the lower and upper bounds for 

𝛉, respectively. The sign “≤” is overloaded to represent the entry-wise inequality. The matrices 

𝐊(𝛉) and 𝐌 are permutated according the sets ℳ and 𝒰. 

A special case leads to a convex optimization problem if all DOFs in the structure are measured, 

i.e. ℳ = {1, 2,⋯ ,𝑁} and 𝒰 = ∅. In this case, 𝛉 is the only optimization variable and the problem 

becomes a least-squares problem, which is convex. However, in general, 𝒰 is non-empty and the 

problem in Eq. (3) is a nonconvex optimization problem [17]. When the problem is nonconvex, 

most off-the-shelf optimization algorithms can only find some local optima, which may differ 

greatly from the global optimum. To address this challenge, we utilize the fact that all functions in 

Eq. (3) are equivalently polynomials and propose to apply the SOS approach to relax the problem 

into a convex SDP problem. The SDP problem then can be reliably solved by existing optimization 

algorithms, such as the interior-point method [21]. It should be clarified that this research 
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investigates modal dynamic residual formulation using noise-free data. More systematic studies 

are needed in the future regarding the influence of measurement noise on model updating results. 

One example approach is through regularization with the zero-based correction factors [6]. 

3 Sum-of-squares (SOS) approach 

The SOS approach is applicable for finding the global solutions for polynomial optimization 

problems. We start by introducing notations used in this approach. The set of integers is denoted 

by ℤ, and the set of nonnegative (positive) integers is denoted by ℤ+  (ℤ++). The set of real 

symmetric matrices of size 𝑛 × 𝑛 is denoted as 𝕊𝑛, and the set of positive semidefinite (definite) 

matrices of size 𝑛 × 𝑛  is denoted as 𝕊+
𝑛  (𝕊++

𝑛 ) . A matrix 𝐀 ≽ 𝟎  (𝐀 ≻ 𝟎)  means that 𝐀 ∈

𝕊+
𝑛  (𝐀 ∈ 𝕊++

𝑛 ) is positive semidefinite (definite). The inner product between matrices  𝐀 ∈ 𝕊𝑛 and 

𝐁 ∈ 𝕊𝑛 is denoted as 〈𝐀, 𝐁〉 = Tr(𝐀T𝐁) = ∑𝑎𝑖𝑗𝑏𝑖𝑗 . A monomial in 𝐱 ∈ ℝ𝑛 is denoted as 𝐱𝛂 =

𝑥1
𝛼1𝑥2

𝛼2⋯𝑥𝑛
𝛼𝑛  with 𝛂 = (𝛼1, 𝛼2, ⋯ , 𝛼𝑛) ∈ ℤ+

𝑛  representing the corresponding non-negative 

powers of variables (𝑥1, 𝑥2, ⋯ , 𝑥𝑛). The degree of a monomial is the summation of all the powers 

∑ 𝛼𝑖
𝑛
𝑖=1 . A polynomial in 𝐱 is the linear combination of monomials 𝑓(𝐱) = ∑ 𝑐𝛂𝐱

𝛂
𝛂  with 𝑐𝛂 ∈ ℝ 

as the coefficient for each monomial. The degree of a polynomial 𝑓(𝐱) is the largest degree among 

its monomials, deg(𝑓) = max
𝛂
(∑ 𝛼𝑖

𝑛
𝑖=1 ). 

3.1 Sum-of-squares certificate for nonnegative polynomials 

The SOS approach is developed based on the relationship between nonnegative polynomials and 

the sum of squared polynomials. Nonnegative polynomials are of practical importance in 

numerous optimization applications. In general, checking whether a given polynomial is 

nonnegative or not is a hard problem, and there is no efficient algorithm to solve this problem. 

However, if a polynomial 𝑓(𝐱) can be written as a sum of squared polynomials, then 𝑓(𝐱) is 
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clearly nonnegative over its domain. This explicit expression of 𝑓(𝐱) as a sum of squares (SOS) 

acts as a certificate of nonnegativity, which gives an immediate proof of the nonnegativity of 𝑓(𝐱).  

A necessary condition for nonnegativity of a polynomial 𝑓(𝐱) is that the degree deg(𝑓) is even. 

Considering a polynomial 𝑓(𝐱) = ∑ 𝑐𝛂𝐱
𝛂

𝛂  with even degree deg(𝑓) = 2𝑡,  𝑡 ∈ ℤ++, 𝑓(𝐱) has a 

SOS decomposition, i.e. we can use a sum of squared polynomials to represent 𝑓(𝐱), if and only 

if there is a positive semidefinite matrix 𝐖 ≽ 𝟎 such that: 

𝑓(𝐱) = 𝐳T(𝐱)𝐖𝐳(𝐱) (4) 

 

where 𝐳(𝐱) ∈ ℝ𝑛𝐳 is a vector containing all the base monomials with degree up to 𝑡: 

𝐳(𝐱) = (1, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑥1
2, 𝑥1𝑥2, ⋯ , 𝑥𝑛

2, ⋯ , 𝑥𝑛
𝑡 )T. (5) 

 

According to the theory of combinatorics [22], the number of monomials in 𝑛 variables with 

degree up to 𝑡 is 𝑛𝐳 = (
𝑛 + 𝑡
𝑛
). The equality in Eq. (4) implies that the polynomials on both sides 

should have the same coefficient for the same monomial 𝐱𝛂.  To explicitly describe this coefficient 

matching condition, we define a group of matrices {𝐀𝛂}, and each matrix 𝐀𝛂 ∈ ℝ
𝑛𝐳×𝑛𝐳  is an 

indicator matrix for monomial 𝐱𝛂 in the matrix 𝐳(𝐱)𝐳T(𝐱): 

(𝐀𝛂)𝛃,𝛄 = {
1 if 𝛃 + 𝛄 = 𝛂
0 if 𝛃 + 𝛄 ≠ 𝛂

 (6) 

 

Here the natural ordering of multi-indices 𝛃 ∈ ℤ+
𝑛  and 𝛄 ∈ ℤ+

𝑛  are used to index the entries of 𝐀𝛂. 

Note the equality 𝐳T(𝐱)𝐖𝐳(𝐱) = 〈𝐳(𝐱)𝐳T(𝐱),𝐖〉. Fig. 1 shows the coefficient matching condition 
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between 𝑓(𝐱) and 〈𝐳(𝐱)𝐳T(𝐱),𝐖〉. As shown in the figure, on the left-hand side, the coefficient 

of 𝐱𝛂  in polynomial 𝑓(𝐱)  is 𝑐𝛂 ; on the right-hand side, the coefficient of 𝐱𝛂  in polynomial 

〈𝐳(𝐱)𝐳T(𝐱),𝐖〉  is ∑ 𝐖𝛃,𝛄𝛃+𝛄=𝛂 , which can be written as 〈𝐀𝛂,𝐖〉 . The indicator matrix 𝐀𝛂 

indicates the position of monomial 𝐱𝛂 in the matrix 𝐳(𝐱)𝐳T(𝐱). It is easy to verify that 𝐀𝛂 = 𝐀𝛂
T , 

and 𝐀𝛂 is sparse which means that only a few entries are one and all the others are zero. 

 

Fig. 1 Coefficient matching 

Using the notation shown above, checking whether a given polynomial 𝑓(𝐱)  has an SOS 

decomposition can be formulated as a feasibility SDP problem: 

find 𝐖 
(7) 

subject to 〈𝐀𝛂,𝐖〉 = 𝑐𝛂, ∀𝛂 in 𝑓(𝐱) = ∑ 𝑐𝛂𝐱
𝛂

𝛂  

𝑓 𝐱 = ⋯+ 𝑐𝛂𝐱
𝛂 +⋯ =

𝐱𝛂

𝐱𝛂

1 𝐱𝛃 𝐱𝛄⋯ ⋯ ⋯

1

𝐱𝛃

𝐱𝛄

⋯
⋯

⋯

𝐳 𝐱 𝐳T 𝐱 𝐖

1

1

𝐖𝐀𝛂

𝑐𝛂 = ，

，
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 𝐖 ≽ 𝟎 

 

Example: Consider a polynomial 𝑓(𝐱) in 𝐱 = (𝑥1, 𝑥2)
T with degree of deg(𝑓) = 2: 

𝑓(𝐱) = 1 + 4𝑥1 − 6𝑥2 + 5𝑥1
2 − 16𝑥1𝑥2 + 13𝑥2

2 (8) 

 

The polynomial has six monomials. The power index, monomials, and corresponding coefficients 

are shown below: 

Table 1 Monomials in the polynomial Eq. (8) 

𝛂 (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) 

𝐱𝛂 1 𝑥1 𝑥2 𝑥1
2 𝑥1𝑥2 𝑥2

2 

𝑐𝛂 1 4 −6 5 −16 13 

 

The base monomial vector 𝐳(𝐱) and the matrix 𝐳(𝐱)𝐳T(𝐱) are shown as: 

𝐳(𝐱) = {
1
𝑥1
𝑥2

} 𝐳(𝐱)𝐳T(𝐱) = (

1 𝑥1 𝑥2
𝑥1 𝑥1

2 𝑥1𝑥2
𝑥2 𝑥1𝑥2 𝑥2

2

) 

According to Eq. (6), the indicator matrices {𝐀𝛂} are shown as: 

𝐀(0,0) = (
1 0 0
0 0 0
0 0 0

) 𝐀(1,0) = (
0 1 0
1 0 0
0 0 0

) 𝐀(0,1) = (
0 0 1
0 0 0
1 0 0

) 

𝐀(2,0) = (
0 0 0
0 1 0
0 0 0

) 𝐀(1,1) = (
0 0 0
0 0 1
0 1 0

) 𝐀(0,2) = (
0 0 0
0 0 0
0 0 1

) 
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Solving the feasibility problem in Eq. (7), the solution is calculated as: 

𝐖 = (
1 2 −3
2 5 −8
−3 −8 13

) 

 

Here we use the monomial 𝑥1𝑥2 to illustrate the coefficient matching. The monomial has power 

vector 𝛂 = (1,1), according to which Eq. (6) is used to find matrix 𝐀𝛂. The two possible pairs of 

𝛃 and 𝛄 satisfying 𝛃 + 𝛄 = 𝛂 are: (i) 𝛃 = (1,0) and 𝛄 = (0,1); (ii) 𝛃 = (0,1) and 𝛄 = (1,0). The 

two pairs of 𝛃 and 𝛄 are then used to find matrix 𝐀(1,1) as above. Finally, to verify 〈𝐀𝛂,𝐖〉 = 𝑐𝛂, 

the coefficient of 𝑥1𝑥2  in polynomial 〈𝐳(𝐱)𝐳T(𝐱),𝐖〉  is 〈𝐀(1,1),𝐖〉 = −16 , which equals the 

coefficient of 𝑥1𝑥2 in 𝑓(𝐱).  

This positive semidefinite matrix 𝐖 can be decomposed as 𝐋T𝐋 by many different decomposition 

algorithms, such as Cholesky decomposition or eigen decomposition. The Cholesky 

decomposition provides 

𝐋 = (
1 2 3
0 1 −2

) 

 

Thus, the polynomial in Eq. (8) can be written as a sum of two squared polynomials 

𝑓(𝐱) = 𝐳T(𝐱)𝐖𝐳(𝐱) = (𝐋𝐳(𝐱))
𝐓
(𝐋𝐳(𝐱)) = (1 + 2𝑥1 + 3𝑥2)

2 + (𝑥1 − 2𝑥2)
2 

 

3.2 Solving polynomial optimization problems through SDP 

Consider a general polynomial optimization problem: 
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minimize
𝐱

 𝑓0(𝐱) =∑ 𝑐𝛂0𝐱
𝛂0

𝛂0

 

(9) 

subject to 𝑓𝑖(𝐱) =∑ 𝑐𝛂𝑖𝐱
𝛂𝑖

𝛂𝑖

≥ 0 𝑖 = 1, 2,⋯ , 𝑘 

 

where 𝑓0(𝐱):ℝ
𝑛 → ℝ and 𝑓𝑖(𝐱):ℝ

𝑛 → ℝ are polynomials with degrees of deg(𝑓0) and deg(𝑓𝑖), 

respectively. We denote the optimal objective function value of the problem in Eq. (9) as 𝑓∗. From 

a “dual” point of view, finding optimal objective value 𝑓0
∗ = 𝑓0(𝐱

∗)  can be equivalently 

reformulated as solving for the maximum lower bound of the function 𝑓0(𝐱) over the feasible set 

𝛀 = {𝐱 ∈ ℝ𝑛|𝑓𝑖(𝐱) ≥ 0, 𝑖 = 1, 2,⋯ , 𝑘}: 

maximize
𝛾

 𝛾 
(10) 

subject to 𝑓0(𝐱) − 𝛾 ≥ 0 ∀𝐱 ∈ 𝛀 

 

The optimization problem in Eq. (10) is convex, as the objective function is affine, and the feasible 

set is defined as an intersection of an infinite number of halfspaces. On the other hand, the 

constraints in Eq. (10) are intractable because there are infinitely many halfspaces involved. To 

implement the constraints, the SOS decomposition is utilized [23]. A sufficient condition for 

𝑓0(𝐱) − 𝛾 ≥ 0 over the feasible set 𝛀 is that there exist SOS polynomials 𝑠0(𝐱) and 𝑠𝑖(𝐱), 𝑖 =

1, 2,⋯ , 𝑘, satisfying the following SOS decomposition of 𝑓0(𝐱) − 𝛾: 

𝑓0(𝐱) − 𝛾 = 𝑠0(𝐱) +∑ 𝑠𝑖(𝐱)𝑓𝑖(𝐱)
𝑘

𝑖=1
 (11) 

 

Substituting 𝑓0(𝐱) and 𝑓𝑖(𝐱) from Eq. (9), equivalently we obtain: 
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∑ 𝑐𝛂0𝐱
𝛂0

𝛂0

− 𝛾 = 𝑠0(𝐱) +∑ 𝑠𝑖(𝐱)∑ 𝑐𝛂𝑖𝐱
𝛂𝑖

𝛂𝑖

𝑘

𝑖=1
 (12) 

 

The function 𝑓0(𝐱) − 𝛾  is then represented as a polynomial with degree of 2𝑡 , where 𝑡  is the 

smallest integer satisfying the inequality 2𝑡 ≥ max
𝑖=0,1,⋯,𝑘

(deg(𝑓𝑖)). Here the SOS polynomial 𝑠0(𝐱) 

has degree of deg(𝑠0) = 2𝑡 and 𝑠𝑖(𝐱) has degree of deg(𝑠𝑖) = 2𝑒𝑖, where 𝑒𝑖 is the largest integer 

satisfying the condition 2𝑒𝑖 ≤ 2𝑡 − deg(𝑓𝑖).  Indeed, if we evaluate the above equation in any 𝐱 ∈

𝛀, nonnegativity of the SOS polynomials implies that 𝑓0(𝐱) − 𝛾 ≥ 0. We introduce the indicator 

matrices {𝐀𝛂0}  and {𝐁𝑖,𝛂0} , 𝑖 = 1, 2,⋯ , 𝑘 , for coefficient matching. Recall 𝛂0  is the variable 

index in function 𝑓0(𝐱) and 𝛂𝑖 is the variable index in function 𝑓𝑖(𝐱) in Eq. (9). Analogous to Eq. 

(6), each 𝐀𝛂0 and each 𝐁𝑖,𝛂0 are defined as: 

(𝐀𝛂0)𝛃,𝛄
= {
1 if 𝛃 + 𝛄 = 𝛂0
0 if 𝛃 + 𝛄 ≠ 𝛂0

 

(13) 

(𝐁𝑖,𝛂0)𝛃,𝛄
= {
𝑐𝛂𝑖 if 𝛃 + 𝛄 + 𝛂𝑖 = 𝛂0
0 if 𝛃 + 𝛄 + 𝛂𝑖 ≠ 𝛂0

 

 

Here the natural ordering of multi-indices 𝛃 and 𝛄 are used to index the entries of 𝐀𝛂0 and 𝐁𝑖,𝛂0. 

Representing the inequality constraints in Eq. (10), 𝑓0(𝐱) − 𝛾 ≥ 0, ∀𝐱 ∈ 𝛀, through coefficient 

matching, the optimization problem is then relaxed to an SDP problem with 𝛾, 𝐖, and 𝐐𝑖  as 

optimization variables: 

maximize
𝛾,𝐖,𝐐𝑖 

 𝛾 

(14) 

subject to 𝐀𝟎 ∙ 𝐖 +∑ 𝐁𝑖,𝟎 ∙ 𝐐𝑖
𝑘

𝑖=1
= 𝑐𝟎 − 𝛾 
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 𝐀𝛂0 ∙ 𝐖 +∑ 𝐁𝑖,𝛂0 ∙ 𝐐𝑖
𝑘

𝑖=1
= 𝑐𝛂0 , ∀𝛂0 ≠ 𝟎 

 𝐖 ≽ 𝟎, 𝐐𝑖 ≽ 𝟎, 𝑖 = 1, 2,⋯ , 𝑘 

 

Solving the SDP problem in Eq. (14) provides the maximum lower bound 𝛾∗ for the original 

optimization problem in Eq. (9). Although it is possible that 𝛾∗ < 𝑓∗, in practical applications, this 

lower bound achieved by SOS relaxation usually reaches the optimal value of the original 

optimization problem, i.e. 𝛾∗ = 𝑓∗ [24].   

The minimizer of the original optimization problem in Eq. (9) can be extracted from the solution 

of the dual problem of the SDP problem in Eq. (14). Define the dual variables, including 

Lagrangian multiplier vector 𝐲 and matrices 𝐔 ≽ 𝟎 and 𝐕𝑖 ≽ 𝟎, 𝑖 = 1, 2,⋯ , 𝑘. Here we adopt the 

natural order for the dual variable 𝐲 as: 

𝐲 = {𝐲𝛂0} = {𝑦(0,0,⋯,0), 𝑦(1,0,⋯,0), 𝑦(0,1,⋯,0), ⋯ , 𝑦(0,0,⋯,1),⋯ , 𝑦(0,0,⋯,2𝑡)}
T
 (15) 

 

The Lagrangian for the problem in Eq. (14) can be written as: 

ℒ(𝛾,𝐖,𝐐𝑖 , 𝐲, 𝐔, 𝐕𝑖) = 𝛾 + 𝑦𝟎 (𝑐𝟎 − 𝛾 − 〈𝐀𝟎,𝐖〉 −∑ 〈𝐁𝑖,𝟎, 𝐐𝑖〉
𝑘

𝑖=1
) 

(16) 

 +∑ 𝑦𝛂0 (𝑐𝛂0 − 〈𝐀𝛂0 ,𝐖〉 −∑ 〈𝐁𝑖,𝛂0 , 𝐐𝑖〉
𝑘

𝑖=0
)

𝛂0≠𝟎
+ 〈𝐔,𝐖〉 +∑ 〈𝐕𝑖 , 𝐐𝑖〉

𝑘

𝑖=1
 

 =∑ 𝑐𝛂0𝑦𝛂0
𝛂0

+ 𝛾(1 − 𝑦𝟎) + ⟨𝐔 −∑ 𝑦𝛂0𝐀𝛂0
𝛂0

,𝐖⟩ 

 +∑ ⟨𝐕𝑖 −∑ 𝑦𝛂0𝐁𝑖,𝛂0
𝛂0

, 𝐐𝑖⟩
𝑘

𝑖=1
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The dual function is then formulated as the supremum of the Lagrangian with respect to primal 

variables 𝛾, 𝐖, and 𝐐𝑖. The dual function is found as: 

𝒟(𝐲, 𝐔, 𝐕𝑖) = sup
𝛾,𝐖,𝐐𝑖

ℒ(𝛾,𝐖,𝐐𝑖, 𝐲, 𝐔, 𝐕𝑖) 

(17) 

 = {
∑ 𝑐𝛂0𝑦𝛂0

𝛂0

if 𝑦𝟎 = 1, 𝐔 =∑ 𝑦𝛂0𝐀𝛂0
𝛂0

, 𝐕𝑖 =∑ 𝑦𝛂0𝐁𝑖,𝛂0
𝛂0

 

+∞ otherwise

 

 

Thus, the dual problem of the SDP problem in Eq. (13) can be written as: 

minimize
𝐲 

 ∑ 𝑐𝛂0𝑦𝛂0
𝛂0

 

(18) 

subject to 𝑦𝟎 = 1 

 𝐔 =∑ 𝑦𝛂0𝐀𝛂0
𝛂0

≽ 𝟎 

 𝐕𝑖 =∑ 𝑦𝛂0𝐁𝑖,𝛂0
𝛂0

≽ 𝟎 𝑖 = 1, 2,⋯ , 𝑘 

 

It has been shown that if 𝛾∗ = 𝑓∗, the optimal solution of the dual problem in Eq. (18) can be 

calculated as [25]: 

𝐲∗ = (1, 𝑥1
∗, 𝑥2

∗, ⋯ , 𝑥𝑛
∗ , ⋯ , (𝑥𝑛

∗)2𝑡 )T (19) 

 

where the entries correspond to the monomials 𝐱𝛂0. Thus, the optimal solution 𝐱∗ for the original 

problem in Eq. (9) can be easily extracted from 𝐲∗, as the 2nd to the (𝑛 + 1)th entries. Since most 

of the primal-dual interior methods simultaneously solve both the primal and dual problems, the 

optimal solution 𝐱∗ can be computed efficiently.  
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In summary, the SOS approach provides the great theoretical advantage of converting a nonconvex 

polynomial optimization problem into a convex SDP problem. Thus, all the desirable properties 

of convex problems can be exploited to analyze and solve the problem. However, the size of the 

SDP problem remains a significant challenge. Recall that there are 𝑛 optimization variables in the 

optimization problem in Eq. (9). In order to achieve the SOS representation in Eq. (11), the degree 

of SOS polynomial 𝑠0(𝐱) should be deg(𝑠0) = 𝑑0 = 2𝑡, where 𝑡 is the smallest integer such that 

2𝑡 ≥ max
𝑖
deg(𝑓𝑖), 𝑖 = 0, 1, 2,⋯ , 𝑘 . Similarly, the degree of SOS polynomial 𝑠𝑖(𝐱) should be 

deg(𝑠𝑖) = 𝑑𝑖 = 𝑑0 − 𝑒𝑖 , where 𝑒𝑖  is the smallest even integer such that 𝑒𝑖 ≥ deg(𝑓𝑖) , 𝑖 =

1, 2,⋯ , 𝑘 . The sizes of the matrices 𝐖  and 𝐐𝑖  are (
𝑛 + 𝑑0
𝑛

) × (
𝑛 + 𝑑0
𝑛

)  and (
𝑛 + 𝑑𝑖
𝑛

) ×

(
𝑛 + 𝑑𝑖
𝑛

), respectively, and the number of equality constraints in Eq. (14) is (
𝑛 + 2𝑑0
𝑛

) [17]. The 

size of the SDP problem in Eq. (14) can be very large as 𝑛 and/or 𝑑0 grow, making the problem 

while theoretically convex, practically unsolvable. This difficulty necessitates exploring the 

problem structure to improve the solvability of the SDP problem.  

3.3 Exploring sparsity in the SOS approach 

As discussed in the previous section, the SDP problem formulated by the SOS approach can be 

very computationally expensive when 𝑛 and/or 𝑑0 are large. One approach taking advantage of 

the sparsity of the underlying polynomials can be applied to reduce the size of the SDP problem. 

Here, we examine a specific sparsity pattern that the polynomial objective function consists of 

several polynomials only involving a small number of variables. Take the modal dynamic residual 

formulation in Eq. (3) as an example. The total number of optimization variables in Eq. (3) is 𝑛𝛉 +

𝑛𝑢 ∙ 𝑛modes , including the stiffness parameter 𝛉 ∈ ℝ𝑛𝛉  and the unmeasured entries 𝛙𝒰 =

(𝛙𝒰,1
T , 𝛙𝒰,2

T ,⋯ ,𝛙𝒰,𝑛modes
T )

T
∈ ℝ𝑛𝒰⋅𝑛modes×1  in the mode shapes. Nevertheless, the objective 
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function consists of  𝑛modes polynomials, each of which involves only 𝛉 ∈ ℝ𝑛𝛉 and 𝛙𝒰,𝑖 ∈ ℝ
𝑛𝒰 . 

This fact enlightens that we can represent each polynomial in SOS form, so that the cross terms 

between 𝛙𝒰,𝑖 and 𝛙𝒰,𝑗, 𝑖 ≠ 𝑗, need not to be considered.  

Consider a constrained polynomial optimization problem in which the objective function consists 

of several polynomials: 

 

minimize
𝐱

 𝑓0(𝐱) =∑ 𝑓0,𝑗(𝐱)
𝑚

𝑗=1
=∑ ∑ 𝑐𝛂0,𝑗𝐱

𝛂0,𝑗

𝛂0,𝑗

𝑚

𝑗=1
 

(20) 

subject to 𝑓𝑖(𝐱) =∑ 𝑐𝛂𝑖𝐱
𝛂𝑖

𝛂𝑖

≥ 0 𝑖 = 1, 2,⋯ , 𝑘 

 

Instead of representing 𝑓0(𝐱) as an SOS directly, each polynomial 𝑓0,𝑗(𝐱) is represented as an SOS. 

Here we only consider the sparsity in the objective function. The condition for 𝑓0(𝐱) − 𝛾 ≥ 0 over 

the feasible set 𝛀  is that there exist SOS polynomials 𝑠0,𝑗(𝐱), 𝑗 = 1, 2,⋯ ,𝑚 , and 𝑠𝑖(𝐱), 𝑖 =

1, 2,⋯ , 𝑘, satisfying the following SOS decomposition of 𝑓0(𝐱) − 𝛾 :    

𝑓0(𝐱) − 𝛾 =∑ 𝑠0,𝑗(𝐱)
𝑚

𝑗=1
+∑ 𝑠𝑖(𝐱)𝑓𝑖(𝐱)

𝑘

𝑖=1
 (21) 

 

Substituting 𝑓0(𝐱) and 𝑓𝑖(𝐱) from Eq. (9), equivalently we have: 

∑ ∑ 𝑐𝛂0,𝑗𝐱
𝛂0,𝑗

𝛂0,𝑗

𝑚

𝑗=1
− 𝛾 =∑ 𝑠0,𝑗(𝐱)

𝑚

𝑗=1
+∑ 𝑠𝑖(𝐱)∑ 𝑐𝛂𝑖𝐱

𝛂𝑖

𝛂𝑖

𝑘

𝑖=1
 (22) 
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As the sparsity in 𝑓𝑖(𝐱) is not considered, the indicator matrices {𝐁𝑖,𝛂0} corresponding to function 

𝑠𝑖(𝐱) are the same as those in Eq. (13). The indicator matrices {𝐀𝑗,𝛂0} corresponding to 𝑠0,𝑗(𝐱) are 

introduced below: 

(𝐀𝑗,𝛂0)𝛃,𝛄
= {
1 if 𝛃 + 𝛄 = 𝛂0
0 if 𝛃 + 𝛄 ≠ 𝛂0

 (23) 

 

Note that although we represent each polynomial 𝑓0,𝑗(𝐱)  as an SOS separately, the equality 

constraint on coefficient 𝑐𝛂0 = ∑ 𝑐𝛂0,𝑗
𝑚
𝑗=1  should hold for every monomial 𝐱𝛂0 in 𝑓0(𝐱) − 𝛾. The 

SDP problem through the sparse SOS approach can be formulated as: 

maximize
𝛾,𝐖𝑗,𝐐𝑖 

 𝛾 

(24) 

subject to ∑ 𝐀𝑗,𝟎 ∙ 𝐖𝑗
𝑚

𝑗=1
+∑ 𝐁𝑖,𝟎 ∙ 𝐐𝑖

𝑘

𝑖=1
= 𝑐𝟎 − 𝛾 

 ∑ 𝐀𝑗,𝛂0 ∙ 𝐖𝑗
𝑚

𝑗=1
+∑ 𝐁𝑖,𝛂0 ∙ 𝐐𝑖

𝑘

𝑖=1
= 𝑐𝛂0 , ∀𝛂0 ≠ 𝟎 

 𝐖𝑗 ≽ 𝟎, 𝑗 = 1, 2,⋯ ,𝑚 𝐐𝑖 ≽ 𝟎, 𝑖 = 1, 2,⋯ , 𝑘 

 

Exploiting the sparsity in model updating problem can greatly improve the computation efficiency 

of the SOS approach. For instance, in [20] the authors have shown for the same model updating 

problem on a truss model, the standard SOS approach leads to an SDP problem with 123,256 

variables, while the sparse SOS approach leads to an SDP problem with only 39,267 variables, 

about 1/3 of the original size. 
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4 Facial reduction for regularizing SDP problems 

4.1 Facial reduction  

Although the approach taking advantage of the sparsity in the polynomial has been proven useful 

in reducing the size of the SDP problems, there is still significant room for improvement in 

computational efficiency. In this section, we focus on the redundancy caused by the failure of the 

Slater condition (strict feasibility), i.e., when there is no feasible positive definite matrices 𝐖𝑗 ≻ 𝟎 

and 𝐐𝑖 ≻ 𝟎 for the SDP problems in Eq. (14) and Eq. (24). When the Slater condition fails for the 

SDP problem, SDP solvers, especially those based on the interior-point methods, often struggle to 

find the optimal point. For simplicity of discussion, we use the standard primal form of the SDP 

problem with 𝐂 ∈ 𝕊𝑛 and 𝐀𝑖 ∈ 𝕊
𝑛: 

 

minimize
𝐗

 〈𝐂, 𝐗〉 

(25) subject to 〈𝐀𝑖, 𝐗〉 = 𝑏𝑖 𝑖 = 1, 2,⋯ , 𝑘 

 𝐗 ≽ 𝟎  

 

The initial step of an interior-point method is finding a strictly feasible point, a positive definite 

matrix for the SDP problem. If there is no strictly feasible point, i.e. there is no 𝐗 ≻ 𝟎 that satisfies  

〈𝐀𝑖, 𝐗〉 = 𝑏𝑖, 𝑖 = 1, 2,⋯ , 𝑘, the Slater condition qualification fails. As a result, slight perturbation 

can make the SDP problem infeasible, which increases the difficulty for the numerical algorithms 

solving the problem. In this case, several techniques can be applied to reformulate SDP problems 

which fail the Slater condition qualification, such as adding bound constraints [26] and using the 

homogeneous self-dual embedding method [27]. Here we apply the facial reduction technique to 

regularize the SDP problems. The idea of facial reduction is to reformulate the SDP problem onto 
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a feasible domain with lower dimension. Thus, the equivalent SDP problem is not only more robust 

for numerical algorithms to solve but also smaller in size.  

Let ℂ ⊆ ℝ𝑛 be a convex set. A subset 𝔽 ⊆ ℂ is called a face of ℂ, if and only if 

For any 𝐗, 𝐘 ∈ ℂ such that 
𝐗 + 𝐘

2
∈ 𝔽, 𝐗, 𝐘 ∈ 𝔽 holds. 

 

A face 𝔽 is a proper face if it is non-empty and not equal to ℂ. Fig. 2 shows examples of proper 

faces of two convex sets. In Fig. 2(a), the edge OA is a proper face of the convex set in ℝ2. In Fig. 

2(b), both the edge OA and facet OBC are proper faces of the convex set in ℝ3.  

 

 
(a) Convex set in ℝ2 (b) Convex set in ℝ3 

Fig. 2 Proper faces of convex sets 

 

The feasible set of the semidefinite problem in Eq. (25) can be described by the intersection of an 

affine subspace 𝒜 = { 𝐗 ∈ 𝕊𝑛|〈𝐀𝑖, 𝐗〉 = 𝑏𝑖, 𝑖 = 1, 2,⋯ , 𝑘} with the semidefinite cone 𝕊+
𝑛 . If this 

semidefinite optimization problem is feasible but not strictly feasible, it can be reformulated as an 

optimization problem over a lower dimensional face (proper face) of 𝕊+
𝑛  [28, 29].  

O

A

B

O
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Facial reduction algorithms were first proposed for general conic programming (CP) problems and 

later found many applications in SDP problems. The goal of facial reduction algorithms is to 

reformulate an SDP problem as one over the proper face with lower dimension. In the cases of 

semidefinite problems, finding the proper face containing the feasible set can be achieved by 

solving a sequence of SDP subproblems, which may be as difficult as solving the original SDP 

problem. To address these issues, here we adopt an alternative approach to achieve facial reduction 

by simply inspecting the constraints of the SDP problem [30].  

Example: Consider an SDP problem: 

 

minimize
𝑥1,𝑥2,𝑥3

 ⟨(
0 1
1 1

) , (
𝑥1 𝑥2
𝑥2 𝑥3

)⟩ 

(26) subject to ⟨(
1 0
0 0

) , (
𝑥1 𝑥2
𝑥2 𝑥3

)⟩ = 0  

 (
𝑥1 𝑥2
𝑥2 𝑥3

) ≽ 𝟎  

 

The equality constraint requires that 𝑥1 = 0. The positive semidefinite matrix 𝐗 = (
𝑥1 𝑥2
𝑥2 𝑥3

) ≽ 𝟎 

requires that 𝑥1𝑥3 ≥ 𝑥2
2, and thus 𝑥2 = 0. As 𝐗 = (

0 0
0 𝑥3

) is not positive definite no matter what 

value 𝑥3 takes, the Slater condition (strict feasibility) qualification fails. This SDP problem in Eq. 

(26) can then be reformulated as a regularized SDP problem with lower dimension. In this simple 

example, the SDP problem degenerates to a linear programming (LP) problem, a special case of 

SDP problems. Compared to the SDP problem in Eq. (26), the following equivalent problem is 

regularized and smaller in size. 

 



22 

 

 

minimize
𝑥3

 𝑥3 

(27) 

subject to 𝑥3 ≥ 0  

 

Geometrically, an SDP problem in Eq. (25) minimizes an affine function 〈𝐂, 𝐗〉  over an 

intersection between an affine subspace (defined by linear equalities 〈𝐀𝑖, 𝐗〉 = 𝑏𝑖, 𝑖 = 1, 2,⋯ , 𝑘) 

and a positive semidefinite cone 𝐗 ≽ 𝟎. Fig. 3 illustrates the feasible set of the SDP example in 

Eq. (26). The intersection of the affine subspace 𝑥1 = 0 and the positive semidefinite cone 𝐗 ≽ 𝟎 

is one proper face of the positive semidefinite cone. The proper face is described simply as 𝑥3 ≥

0, i.e. a halfline in this ℝ3 space.  

 

Fig. 3 Feasible set of the SDP example in Eq. (26) 

This example motivates and illustrates the approach to achieve facial reduction by inspecting the 

constraints of the SDP problem. This facial reduction approach is based on the property of a 

positive semidefinite matrix 𝐗 whose leading principal minors are all nonnegative. For the i-th 

𝑥1

𝑥2

𝑥3

𝐗 =
𝑥1 𝑥2
𝑥2 𝑥3

≽ 𝟎

𝑥3 ≥ 0

𝑥1= 0
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linear equality constraint 〈𝐀𝑖, 𝐗〉 = 𝑏𝑖, we first check whether the following equivalent form can 

be obtained by permutating rows and columns of matrices 𝐀𝑖 and 𝐗: 

⟨(
𝐃𝑖 𝟎
𝟎 𝟎

) , (
𝐗11 𝐗12
𝐗21 𝐗22

)⟩ = 𝑏𝑖
′, with 𝐃𝑖 ≻ 𝟎 and 𝑏𝑖

′ = 𝑏𝑖 or 𝑏𝑖
′ = −𝑏𝑖. (28) 

 

If 𝑏𝑖
′ > 0, no facial reduction can be performed according to this constraint. If 𝑏𝑖

′ = 0, 𝐗11 has to 

be a zero matrix. Therefore, we can eliminate this redundant constraint, and delete all the rows and 

columns of 𝐗 corresponding to the nullified variable 𝐗11, and delete the corresponding rows and 

columns in other matrices 𝐀𝑗, 𝑗 ≠ 𝑖. Note that if 𝑏𝑖
′ is found to be negative, then we can claim that 

the SDP problem is infeasible as there is no such positive semidefinite matrix 𝐗 satisfying this 

constraint. The idea of inspecting constraints to achieve facial reduction is proposed by Zhu, et al 

[30]. This facial reduction technique is named as Sieve-SDP, since a sieve-like structure is finally 

obtained as the rows and columns are eliminated in the matrices 𝐗 and 𝐀𝑖. The implementation of 

the Sieve-SDP algorithm is available as public domain software SieveSDP [30], and we will 

apply this facial reduction technique to SDP problems arising from FE model updating. 

4.2 SDP problems arising from FE model updating 

Consider the original model updating problem in Eq. (3), the objective in general is a 4-th order 

polynomial, and the monomials with degree of 4 are the cross terms 𝜃𝑖
2𝜓𝑢,𝑗

2 , 𝑢 ∈ 𝒰. The standard 

SOS approach Eq. (14) generates an SDP problem with redundant constraints. For example, 

consider coefficient matching equality constraint for monomial 𝜓𝑢,𝑗
4  that does not exist in the 

objective function. For simplicity in discussion, we denote the index of this monomial as 𝛂0 =

(𝟎, 4, 𝟎), which means that only the power of 𝜓𝑢,𝑗 is 4 and others are 0. 
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𝐱 = ( 𝜃1, ⋯ 𝜃𝑛𝛉 , 𝜓𝒰1,1, ⋯ 𝜓𝑢,𝑗, ⋯ 𝜓𝒰𝑛𝑢 ,𝑛mode )
T 

𝛂0 = ( 0, ⋯ 0, 0, ⋯ 4, ⋯ 0 )T 

 

As there is no 𝜓𝑢,𝑗
4  in the objective function 𝑓0(𝐱), the corresponding coefficient 𝑐(𝟎,4,𝟎) = 0. From 

coefficient matching in the standard SOS approach, the indicator matrix for monomial 𝜓𝑢,𝑗
4  has 

only one non-zero entry: 

𝐀(𝟎,4,𝟎) =

(

 
 

0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 1 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0)

 
 
.  

 

Meanwhile, the model updating problem in Eq. (3) only incorporates bounds on 𝛉, and the bounds 

can be equivalently rewritten as polynomials 𝑓𝑖(𝐱) = (𝜃𝑖 − 𝐿𝑖)(𝑈𝑖 − 𝜃𝑖) ≥ 0 . Since 

∑ 𝑠𝑖(𝐱)𝑓𝑖(𝐱)
𝑛𝛉
𝑖=1  as in the R.H.S. of Eq. (11) cannot produce monomial 𝜓𝑢,𝑗

4 , all the indicator 

matrices 𝐁𝑖,(𝟎,4,𝟎) = 𝟎. Thus, the coefficient matching equality constraint in Eq. (14) for monomial 

𝜓𝑢,𝑗
4  is 〈𝐀(𝟎,4,𝟎),𝐖〉 = 0. By Eq. (28), the constraint is redundant and can be eliminated; the 

corresponding diagonal entry in the matrix variable 𝐖 should be zeroed out.  

The sparse SOS approach through Eq. (24) generates similar redundancy. When representing the 

objective function as 𝑛modes SOS polynomials, only the j-th polynomial contains the monomial 

𝜓𝑢,𝑗
4 . This fact implies that the indicator matrices in Eq. (24) as: 
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𝐀𝑗,(𝟎,4,𝟎) =

(

 
 

0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 1 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0)

 
 

 and 𝐀𝑝,(𝟎,4,𝟎) = 𝟎, 𝑝 ≠ 𝑗. 

 

The indicator matrix corresponding to 𝑠𝑖(𝐱) is 𝐁𝑖,(𝟎,4,𝟎) = 𝟎 for the same reason as the standard 

SOS approach. Thus, the coefficient matching equality constraint in Eq. (24) for monomial 𝜓𝑢,𝑗
4  is 

〈𝐀𝑗,(𝟎,4,𝟎),𝐖𝑗〉 = 0, which is redundant and can be eliminated. The corresponding entry in matrix 

variable 𝐖𝑗  should be zerod out. 

Example: Consider the four-story shear frame structure in [17]. A scalar stiffness updating 

variable 𝜃 represents the relative change from the nominal value of the stiffness parameter of the 

4-th story. Another two variables are the unmeasured 4-th entries in the first and second mode 

shape vectors, 𝛙𝓤 = (𝜓4,1, 𝜓4,2)
T

. The optimization variable vector is 𝐱 = (𝜃, 𝜓4,1, 𝜓4,2)
T

. 

Plugging in the numerical vales of the example structure, the optimization problem is found as 

follows according the formulation in Eq. (3): 

minimize
𝜃,𝜓4,1,𝜓4,2

 𝑓0(𝐱) = 104.21 + 136.71𝜃 + 231.65𝜓4,1 + 106.34𝜓4,2 + 66.21𝜃
2 

(29) 

  +461.18𝜃𝜓4,1 + 89.60𝜃𝜓4,2 + 177.45𝜓4,1
2 + 100.14𝜓4,2

2   

  +376.02𝜃𝜓4,1
2 + 207.39𝜃𝜓4,2

2 + 229.53𝜃2𝜓4,1 − 16.74𝜃
2𝜓4,2  

  +200.00𝜃2𝜓4,1
2 + 200.00𝜃2𝜓4,2

2   

subject to 𝑓1(𝐱) = 1 − 𝜃
2 ≥ 0 

 

As shown in Eq. (29), the coefficients for 𝜓4,1
4  and 𝜓4,2

4  are 0, and the coefficient matching equality 

constraint for these monomials are redundant when using the standard and the sparse SOS 
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approaches. Take the monomial 𝜓4,2
4  as an example. Using the standard SOS approach Eq. (14), 

the formulated SDP problem has two matrix variables 𝐖  and 𝐐  corresponding to SOS 

polynomials 𝑠0(𝐱) and 𝑠1(𝐱). The indicator matrix of 𝜓4,2
4  for 𝑠0(𝐱) is 

𝐀(0,0,4) =

(

 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1)

 
 
 
 
 
 
 

. 

 

As the inequality constraint 𝑓1(𝐱) incorporates only variable 𝜃 and the SOS polynomial 𝑠1(𝐱) is a 

second order polynomial, the polynomial 𝑠1(𝐱)𝑓1(𝐱) cannot generate the monomial 𝜓4,2
4 , and thus 

the indicator matrix 𝐁(0,0,4) = 𝟎 ∈ ℝ
4×4. The coefficient matching equality constraint for 

monomial 𝜓4,2
4  is then found as 〈𝐀(0,0,4),𝐖〉 = 0, which is redundant and can be eliminated. 

Using the sparse SOS approach Eq. (24), the formulated SDP problem has three matrix variables 

𝐖1 , 𝐖2 , and 𝐐  corresponding to SOS polynomials 𝑠0,1(𝐱) , 𝑠0,2(𝐱) , and 𝑠1(𝐱) . As the SOS 

polynomial 𝑠0,1(𝐱) is a function of variable 𝜃 and 𝜓4,1, the indicator matrix of 𝜓4,2
4  for 𝑠0,1(𝐱) is 

𝐀1,(0,0,4) = 𝟎 ∈ ℝ
6×6. On the other hand, the SOS polynomial 𝑠0,2(𝐱) is a function of variables 𝜃 

and 𝜓4,2, and the indicator matrix of 𝜓4,2
4  for 𝑠0,2(𝐱) is 

𝐀2,(0,0,4) =

(

  
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1)

  
 
. 
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The indicator matrix of 𝜓4,2
4  for 𝑠1(𝐱) is 𝐁(0,0,4) = 𝟎 ∈ ℝ

4×4 for the same reason as the standard 

SOS approach. The coefficient matching equality constraint for monomial 𝜓4,2
4  is then found as 

〈𝐀2,(0,0,4),𝐖2〉 = 0, which is redundant and can be eliminated. 

This example demonstrates that there are many redundancies in the SDP problems formulated by 

the standard and the sparse SOS approaches. The facial reduction algorithm can be applied to 

eliminate these types of redundancy and result in more solvable SDP problems. 

5 Validation examples 

To validate the proposed approaches for model updating and the facial reduction algorithm for 

regularizing the SDP problems, a plane truss structure, which has been analyzed previously [20], 

is simulated. The truss model has 10 nodes, and each node has a vertical and a horizontal DOF. 

All member cross-sectional areas are set as 8×10
-5

 m2 , and the material density is set as 

7,849 kg m3⁄ . Flexible support conditions are considered in this structure. Vertical and horizontal 

springs (𝑘1 and 𝑘2) are allocated at the left support, while a vertical spring (𝑘3) is allocated at the 

right support. The Young’s moduli of the truss bars are divided into three groups, including 𝐸1 of 

the top-level truss bars, 𝐸2 of the diagonal and vertical truss bars, and 𝐸3 of the bottom-level truss 

bars. The mechanical properties of the structure are summarized in Table 2, including the 

initial/nominal values and the “as-built”/actual values. The same measurement layout, with eight 

DOFs measured by sensors, is used and illustrated in Fig. 4. Mode shapes extracted from the 

“experimental” data are only available at these eight measured DOFs. The number of unmeasured 

DOFs is therefore twelve. 
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Fig. 4 Plane truss structure with 8 DOFs measured 

 

Table 2. Model updating parameters 

Property Initial/Nominal “As-built”/Actual 
Ideal updating 

result for 𝜃𝑖 

Young’s moduli 

(×1011 N m2⁄ ) 

Top (𝐸1) 2 2.2 0.100 

Diagonal & Vertical (𝐸2) 2 1.8 −0.100 

Bottom (𝐸3) 2 1.9 −0.050 

Springs 

(×106 N m⁄ ) 

𝑘1  6 7 0.167 

𝑘2  6 3 −0.500 

𝑘3  6 5 −0.167 

 

5.1 Using the data set involving the first two modes 

For comparison with previous results, it is also assumed that only the first two modes (associated 

with the two lowest resonance frequencies) are available for model updating. Fig. 5 shows the first 

two resonance frequencies and mode shapes of the plane truss structure. 

Mode 1: 68.727 Hz Mode 2: 99.263 Hz 

  
Fig. 5 Modal properties of the plane truss structure 

 

𝑘1

𝑘2

𝑘3
Horizontal measurement Vertical measurement
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Six stiffness parameters 𝛉 ∈ ℝ6 are updated, including three Young’s moduli in the structure (𝐸1, 

𝐸2, and 𝐸3) and the spring stiffness values (𝑘1, 𝑘2, and 𝑘3). The ideal updating result for each 𝜃𝑖 

is shown in the last column of Table 2. The lower bound for 𝛉 is set as 𝐋 = −16×1 and the upper 

bound is set as 𝐔 = 16×1 . The bounds effectively restrict the variation range of the stiffness 

parameters as ±100%. In total, 𝑛𝑢 = 12 DOFs of the structure are unmeasured. As per Eq. (3), all 

unmeasured entries in the two available mode shapes, 𝛙𝒰 = {
𝛙𝒰,1
𝛙𝒰,2

} ∈ ℝ24 , are treated as 

optimization variables together with 𝛉. The total number of optimization variables is 𝑛 = 𝑛𝛉 +

𝑛modes ∙ 𝑛𝒰 = 6 + 2 × 12 = 30. To minimize the modal dynamic residual 𝑟, the model updating 

problem can be formulated as follows with optimization variables 𝐱 = (𝛉,𝛙𝒰).  

minimize
𝐱=(𝛉, 𝛙𝒰) 

 𝑓(𝐱) = 𝑟 =∑‖[𝐊(𝛉) − 𝜔𝑗
2𝐌] {

𝛙ℳ,𝑗

𝛙𝒰,𝑗
}‖

2

22

𝑗=1

 

(30) 

subject to 1− 𝜃𝑖
2 ≥ 0 𝑖 = 1, 2, ⋯, 6 

 

Using the standard SOS approach, the nonconvex problem in Eq. (30) is recast into an equivalent 

convex SDP problem Eq. (14). In the SDP problem, optimization variables 𝛾, 𝐖, 𝐐𝑖 (𝑖 = 1, ⋯, 6) 

are introduced. The variable 𝛾 is a scalar. With 𝑑 = 2𝑡 = 4 and 𝑛 = 30, the size of variable 𝐖 is 

(
𝑛 + 𝑡
𝑛
) × (

𝑛 + 𝑡
𝑛
) = (

30+ 2

30
) × (

30+ 2

30
)=496 × 496 . Recall in Eq. (12), 𝑒𝑖  is the largest 

integer satisfying the condition 2𝑒𝑖 ≤ 2𝑡 − deg(𝑓𝑖). In this example, with 𝑒𝑖 = 1, the size of 

variable 𝐐𝑖  is (
𝑛 + 𝑡 − 𝑒𝑖

𝑛
) × (

𝑛 + 𝑡 − 𝑒𝑖
𝑛

) = (
30+ 2− 1

30
) × (

30 + 2− 1

30
) = 31 × 31 . In 

addition, coefficient matching generates (
𝑛 + 𝑑
𝑛
) = (

30+ 4

30
) = 46,376 linear equality constraints. 
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It took 457h-16min-49s to solve this SDP problem formulated by the regular SOS approach on a 

computing clusters using 16 CPUs and 84.56 GB RAM memory [20].  

Now we apply the facial reduction technique on the SDP problem. The size of variable 𝐖 is 

reduced to 196 × 196, about 40% of the original size. The size of variable 𝐐𝑖  is not changed, 

remaining as 31 × 31. As a result, the number of linear equality constraints is reduced to 10,626, 

about 22% of the original number of 46,376. It took only 1h-55min to solve this SDP problem 

regularized by the facial reduction technique on the same computing cluster.   

Next, we consider applying the sparse SOS approach Eq. (24) to the problem. The objective 

function of problem in Eq. (30) consists of two polynomials, each of which contains updating 

parameters 𝛉 and unmeasured entries in the mode shape 𝛙U,𝑗, 𝑗 = 1, 2. Each polynomial has 𝑛𝑗 =

18  variables and degree of 𝑑𝑗 = 2𝑡𝑗 = 4 . Applying the sparse SOS approach, the nonconvex 

problem in Eq. (30) can be recast into an equivalent convex SDP problem, with optimization 

variables 𝛾, 𝐖𝑗  (𝑗 = 1, 2), and 𝐐𝑖  (𝑖 = 1, ⋯, 6). The variables 𝛾 and 𝐐𝑖  (𝑖 = 1, ⋯, 6) share the 

same size as those produced by the SOS approach. With 𝑑𝑗 = 2𝑡𝑗 = 4 and 𝑛𝑗 = 18, the size of 

variable 𝐖𝑗  is (
𝑛𝑗 + 𝑡𝑗
𝑛𝑗

) × (
𝑛𝑗 + 𝑡𝑗
𝑛𝑗

) = (
18+ 2

18
) × (

18+ 2

18
)=190 × 190 . The coefficient 

matching also generates (
𝑛 + 𝑑
𝑛
) = (

30 + 4

30
) = 46,376 linear equality constraints. Solving the 

SDP problem formulated by the sparse SOS approach, without facial reduction, took 3h-13min-

14s on the same computing cluster [20].   

Next, we apply the facial reduction technique on the SDP problem. The size of variable 𝐖𝑗  is 

reduced to 112 × 112, about 60% as the original size. The size of variable 𝐐𝑖  is not changed, 

remaining as 31 × 31. The number of the linear equality constraints is reduced to 7,602, about 16% 
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of the original number of 46,376. It took only 10min-53s to solve this SDP problem regularized 

by the facial reduction algorithm on the same computing cluster. 

Table 3 summarizes the updating results obtained from the standard SOS and the sparse SOS 

approaches with facial reduction. Both approaches can solve the model updating problem with 

acceptable accuracy. The updating results of the standard SOS and sparse SOS approaches slightly 

deviate from the ideal updating results 𝛉∗. These numerical inaccuracies of the SDP solutions are 

inevitable as the problems are solved on double precision floating point SDP solvers [31, 32]. To 

further refine the updating results, we adopt the data processing method proposed in [33]. The 

identified parameters from the SDP solutions are used as the initial points and the function 

lsqnonlin in MATLAB Optimization Toolbox [34] is applied to solve the problem in Eq. (30). 

The updating results shows that the SDP solutions serve as good starting points, and the model 

updating results from the local optimization solver reach the global optimal solution. 

Table 3. Updating results for the structure with the first 2 modes measured at 8 DOFs 

Variables 
Ideal updating 

results 𝛉∗ 
The standard SOS 

approach 𝛉SOS
∗  

The sparse SOS 

approach 𝛉SpSOS
∗  

𝛉SOS
∗  as initial 

point 

𝛉SpSOS
∗  as initial 

point 

𝜃1 0.100 0.096 0.097 0.100 0.100 

𝜃2 −0.100 −0.100 −0.102 −0.100 −0.100 

𝜃3 −0.050 −0.051 −0.052 −0.050 −0.050 

𝜃4 0.167 0.164 0.164 0.167 0.167 

𝜃5 −0.500 −0.500 −0.501 −0.500 −0.500 

𝜃6 −0.167 −0.166 −0.168 −0.167 −0.167 

 

5.2 Using the data set involving the first five modes 

In practice, incorporating more experimental modes in model updating usually provides better 

updating results. However, for SOS approaches, utilizing more modes introduces more 

optimization variables and makes the SDP problems more difficult to solve. With the help of facial 

reduction, such unsolvable problems can be simplified to be solvable again. To study this issue, 
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we now assume that the first five modes are available for model updating. Modal properties of the 

first two modes are already shown in Fig. 5. Resonance frequencies and mode shapes of the third 

to the fifth modes are consequently shown in Fig. 6. 

Mode 3: 208.71 Hz Mode 4: 314.71 Hz Mode 5: 404.26 Hz 

   
Fig. 6 Modal properties of the plane truss structure 

 

The same stiffness updating variables, 𝛉 ∈ ℝ6  corresponding to three Young’s moduli in the 

structure (𝐸1, 𝐸2, and 𝐸3) and the spring stiffness values (𝑘1, 𝑘2, and 𝑘3), are updated through the 

optimization process. To formulate the optimization problem, all unmeasured entries in the five 

available mode shapes, 𝛙𝒰 = {𝛙𝒰,1
T , 𝛙𝒰,2

T , 𝛙𝒰,3
T , 𝛙𝒰,4

T , 𝛙𝒰,5
T }

T
∈ ℝ60, are treated as optimization 

variables together with 𝛉. The total number of optimization variables is 𝑛 = 𝑛𝛉 + 𝑛modes ∙ 𝑛𝒰 =

6+ 5 × 12 = 66, which is notably higher than the example shown in the previous section. The 

same lower bound and upper bound for 𝛉 are adopted, and the optimization problem can be 

formulated in a similar way as shown in Eq. (30). 

Discussion in Section 5.1 indicates that the sparse SOS approach with facial reduction is the most 

efficient method to solve the FE model updating problem. For this problem, there are five 

polynomials of ‖[𝐊(𝛉) − 𝜔𝑖
2𝐌] {

𝛙ℳ,𝑖

𝛙𝒰,𝑖
}‖
2

2

 in the objective function, each of which involves 

updating parameters 𝛉  and unmeasured entries in the mode shape 𝛙U,𝑗 , 𝑗 = 1, ⋯, 5 . Each 

polynomial has 𝑛𝑗 = 18  variables and a degree of 𝑑𝑗 = 2𝑡𝑗 = 4 . The sparse SOS approach 

introduces optimization variables 𝛾, 𝐖𝑗  (𝑗 = 1, ⋯, 5), and 𝐐𝑖  (𝑖 = 1, ⋯, 6). The variable 𝛾 is a 
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scalar. With 𝑑𝑗 = 2𝑡𝑗 = 4  and 𝑛𝑗 = 18 , the size of variable 𝐖𝑗  is (
𝑛𝑗 + 𝑡𝑗
𝑛𝑗

) × (
𝑛𝑗 + 𝑡𝑗
𝑛𝑗

) =

(
18+ 2

18
) × (

18+ 2

18
)=190 × 190 . With 𝑛 = 66 , 𝑡 = 2  and 𝑒𝑖 = 1 , the size of variable 𝐐𝑖  is 

(
𝑛 + 𝑡 − 𝑒𝑖

𝑛
) × (

𝑛 + 𝑡 − 𝑒𝑖
𝑛

) = (
66+ 2− 1

66
) × (

66+ 2 − 1

66
) = 67 × 67 . The coefficient 

matching generates (
𝑛 + 𝑑
𝑛
) = (

66 + 4

66
) = 916,895  linear equality constraints. Without using 

facial reduction technique, the SDP solver was not able to solve the problem after continuously 

running for five days on the cluster; at the end, the process was manually terminated due to lack 

of progress.   

On the other hand, when the facial reduction algorithm is applied on the SDP problem, the size of 

variable 𝐖𝑗  is reduced to 112 × 112, about 60% of the original size. The size of variable 𝐐𝑖 is not 

changed, remaining as 67 × 67. The number of linear equality constraints is reduced to 26,250, 

about 3% of the original number.  Solution of this regularized SDP problem took 1h-28min-6s on 

the same computing cluster to successfully complete.  Table 4 summarizes the updating results 

obtained from the sparse SOS approach with facial reduction. Compared to the results with only 2 

modes, the updating results with 5 modes available are more accurate. Therefore, it is not necessary 

to further optimize the parameters using the function lsqnonlin as in Section 5.1. 

Table 4. Updating results for the structure with the first 5 modes measured at 8 DOFs 

Variables 
Ideal updating 

results 𝛉∗ 
The sparse SOS 

approach 𝛉SSOS
∗  

𝜃1 0.100 0.100 

𝜃2 −0.100 −0.100 

𝜃3 −0.050 −0.050 

𝜃4 0.167 0.167 

𝜃5 −0.500 −0.500 

𝜃6 −0.167 −0.167 
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6 Summary and discussion 

This paper proposes facial reduction technique for solving the SDP problems in FE model updating.  

Modal dynamic residual approach formulates a polynomial optimization problem to update the 

unknown structural parameters as well as unmeasured entries in the mode shape vectors. The SOS 

approaches convert a polynomial optimization problem into a convex SDP problem, of which the 

global optimality is guaranteed. Prior work has demonstrated that the standard SOS and the sparse 

SOS approaches are capable of reliably solving the global optimum for the FE model updating 

problem. Although the sparse SOS approach exploits the sparsity in the polynomial and greatly 

reduces the computation effort, the complexity of the SDP problems still remains as a major 

challenge.  

In this paper, we take advantage of the failure of the Slater constraint qualification and apply the 

facial reduction algorithm to regularize the SDP problems into ones with smaller size. Model 

updating for a plane truss structure is conducted to validate the proposed approach. The simulation 

shows that the facial reduction algorithm can efficiently reduce the size of the SDP problems 

derived from the standard SOS and the sparse SOS approaches. As demonstrated in the first 

example with two modes available, the facial reduction technique reduces computation time from 

457h-16min-49s to 1h-55min for the standard SOS approach, and from 3h-13min-14s to only 

10min-53s for the sparse SOS approach.  As demonstrated in the second example with five modes 

available, not mentioning the standard SOS approach, even the sparse SOS approach cannot solve 

the problem after running continuously for five days; whereas the facial reduction technique finds 

the solution in 1h-28min-6s. The optimal solutions calculated from the proposed approach are 

verified to be the global minimum.  
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While the proposed SOS optimization with facial reduction demonstrates promising performance, 

the authors acknowledge that current development is not feasible for larger-scale structural models 

with hundreds of thousands DOFs. Toward larger applications and under realistic constraints on 

computing resources, model order reduction techniques, such as dynamic condensation [35], can 

be investigated for incorporation with the proposed formulation using SOS optimization. Another 

future research direction is extending the proposed SOS approach to include uncertainties. The 

perturbed model parameters would result in an SDP problem with uncertain data. In this scenario, 

the robust optimization methodology [36] can be a promising way to find the reliable solution of 

such an SDP whose data are contaminated with perturbation. 
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