
Model Updating with Experimental Frequency Response 1 

Function Considering General Damping  2 

 Yu Hong1,2, Qianhui Pu*1, Yang Wang2, Liangjun Chen1, Hongye Gou1, Xiaobin Li1 3 

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China; 4 

2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, USA 5 

 6 

Abstract: In order to obtain a more accurate finite element (FE) model of a constructed structure, a new frequency 7 

response function (FRF)-based model updating approach is proposed. A general viscous damping model is assumed in 8 

this approach for better simulating the actual structure. The approach is formulated as an optimization problem which 9 

intends to minimize the difference between analytical and experimental FRFs. Neither dynamic expansion nor model 10 

reduction is needed when not all degrees of freedom are measured. State-of-the-art optimization algorithms are utilized 11 

for solving the non-convex optimization problem. The effectiveness of the presented FRF model updating approach is 12 

validated through a laboratory experiment on a four-story shear-frame structure. To obtain the experimental FRFs, a 13 

shake table test was conducted. The proposed FRF model updating approach is shown to successfully update the stiffness, 14 

mass and damping parameters in matching the analytical FRFs with the experimental FRFs. In addition, the updating 15 

results are also verified by comparing time-domain experimental responses with the simulated responses from the updated 16 

model.   17 
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1 Introduction  23 

With rapid development in numerical simulations, FE analysis has become a more and more 24 

powerful tool in structural engineering. Although significant improvements have been made towards 25 

accurate FE modeling, in general, there are still distinct differences between behaviors of a constructed 26 

structure and these of the FE model built according to the same design drawings. It is well known that 27 
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analytical results from FE model often differ from performance of an actual structure in the field. The 28 

mismatch is mainly caused by nominal material property values, idealized boundary conditions, 29 

difficulties in modeling of damping, etc. To achieve an FE model that more accurately represents the 30 

actual structure, FE model updating can be performed through calibration with high-fidelity 31 

experimental test data. An accurate FE model can also be used later for structural safety monitoring and 32 

damage detection. 33 

A number of FE model updating approaches have been proposed and practically applied during the 34 

past few decades, as reviewed by Imregun and Visser (1991). Friswell and Mottershead (1995) 35 

discussed detailed model updating techniques in their book. Most model updating approaches can be 36 

broadly categorized into time domain approaches and frequency domain approaches. Time domain 37 

approaches usually use vibration data to directly update the FE model (Yang et al. 2009; Hernandez and 38 

Bernal 2013). Although they have merits, the computational efforts are usually a concern. On the other 39 

hand, in frequency domain, most approaches need to use the experimental modal properties of a 40 

structure to construct an optimization problem for model updating (Zhu et al. 2016; Brito et al. 2014; 41 

Jaishi and Ren 2005; Tshilidzi and Sibusiso 2005). The optimization problem generally attempts to 42 

minimize an objective function that contains the difference between experimental and simulated natural 43 

frequencies, mode shapes and modal flexibilities, etc.  In these model updating approaches, extraction 44 

of modal properties from experimental data is first required, which can add uncertainties and 45 

inaccuracies to the updating. In addition, in most cases, only limited amount of modal information can 46 

be obtained from modal analysis. As summarized by Jaishi and Ren (2005), an accurate model can be 47 

achieved only when the number of extracted experimental modal properties is greater than or equal to 48 

the number of interested updating variables.  49 

This research focuses on another category in frequency domain model updating approaches, which 50 

is based on frequency response functions (FRF).  From experimental data, FRFs can be easily calculated 51 

using excitation record and corresponding structural responses.  This avoids the need for extracting 52 

modal properties and the associated extraction errors.  Furthermore, high quality FRFs can be obtained 53 

by using FRF estimators to minimize the influence of noise in the calculation (Schoukens and Pintelon 54 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Schoukens.QT.&newsearch=true


1990; Antoni et al. 2004). Another advantage of FRF-based approaches is that an experimental test can 55 

provide abundant FRF data in a large frequency range. Owing to these advantages, FRF-based 56 

approaches constitute a highly valuable category in FE model updating.  57 

Among the most widely known FRF-based model updating approaches was proposed by Lin and 58 

Ewins (1994), which avoids the inverse of the system dynamic stiffness matrix by using the analytical 59 

FRF sensitivity matrix. This approach usually can perform accurately and efficiently on numerical 60 

simulation cases, because of the assumptions of noise-free and complete measurements on all degrees 61 

of freedoms (DOFs). However, such assumptions, particularly the sensor instrumentation on all DOFs, 62 

are usually unrealistic in practice. Through model reduction technique, Asma and Bouazzouni (2005) 63 

later extended Lin and Ewins’ work to update a truss structure with incomplete measurement.  64 

Alternatively, Avitabile and O’callaham (2001) presented the dynamic expansion approach to get a full 65 

column or row of an FRF matrix. Nevertheless, it is well known that neither reduction nor expansion 66 

can fully describe the actual dynamic behavior of a structure. To overcome this limitation, Sipple and 67 

Sanayei (2014) proposed a numerically evaluated FRF sensitivity-based model updating approach. 68 

Optimization techniques are utilized to iteratively change the analytical FRFs to match the experimental 69 

counterparts. The modal-decomposed analytical FRF is in scalar form which can be directly used in 70 

updating process. The model reduction or dynamic expansion is not necessary in this case. 71 

Due to the existence of damping, the experimental FRFs are usually complex valued functions. 72 

Despite the large amount of literature on damping modeling, damping still remains the least known 73 

aspect compared with stiffness and mass. In order to avoid the difficulties in damping updating, Pradhan 74 

and Modak (2012) proposed to use the real-valued normal FRF matrix (−𝜔2𝑴 + 𝑲) in model updating. 75 

However, when formulating the estimation of the normal FRFs, the method requires the full complex-76 

valued FRF matrix which has to be estimated through the identified modal properties. The estimation 77 

may still require modal identification and add inaccuracies. Since damping cannot be ignored in 78 

practical modeling, especially with complex FRFs, a proper selection of damping model may improve 79 

the model updating accuracy. Among all damping models, viscous damping is the most commonly used 80 

due to its convenience in structural design. Another model, hysteretic damping, can more accurately 81 



describe the energy dissipation in structure vibration, the difficulty of translating this damping 82 

mechanism into time domain prevents an easy adoption.  In addition, Lim and Zhu (2009) demonstrated 83 

that the difference caused by arbitrarily choosing hysteretic damping and viscous damping in system 84 

identification is small. Therefore, most researchers prefer to assume proportional viscous damping (i.e. 85 

Rayleigh damping or Caughey damping) for FRF-based model updating. For example, Imregun et al. 86 

(1995) and Hong et al. (2016) updated the Rayleigh damping coefficients through an extended FRF-87 

based model updating approach. Lu and Tu (2004), Sipple and Sanayei (2014) updated the damping 88 

ratios (corresponding to Caughey damping) in their FRF-based model updating. Nevertheless, 89 

proportional damping may rarely exist in reality, and most structures possess non-proportional damping. 90 

From this point of view, the use of proportional damping will more or less affect the updating accuracy. 91 

A general viscous damping model (which includes both proportional damping and non-proportional 92 

damping) can render more accurate model updating.  93 

This research departs from the authors’ preliminary study (Hong et al. 2016). We focus on a model 94 

updating approach that can minimize the difference between analytical and experimental FRFs directly 95 

at measured DOFs.  This differs from most FRF-based model updating approaches in literature that need 96 

reduction or expansion techniques. In comparison with Sipple and Sanayei (2014) and Hong et al. 97 

(2016), a general viscous damping assumption is provided for better simulating actual structures in 98 

reality. The FRF formulation is derived for a base excitation setup when ground vibration occurs to a 99 

shear-frame building structure (which effectively applies excitation simultaneously at all DOFs).  To 100 

validate the proposed FRF-based model updating, shake table tests are performed on a four-story 101 

laboratory structure in this study, although the authors are currently extending the formulation for future 102 

application to a space frame bridge. The rest of the paper is organized as follows. First, Section 2 103 

presents the analytical FRF formulation for a structure undergoing ground excitation and the 104 

experimental FRF calculation. In section 3, the vector form of the analytical FRF to be used in model 105 

updating is introduced; then the optimization procedure is discussed. Section 4 describes the shake table 106 

test on a four-story aluminum structure for validating the performance of the proposed formulations for 107 

FRF-based model updating.  We compare the experimentally measured frequency domain FRFs and 108 



time domain response histories with their counterparts simulated using the updated model. Finally, 109 

conclusions and future work are provided in Section 5. 110 

 111 

2 Formulations of the frequency response functions 112 

2.1 Analytical formulation of the frequency response functions considering general viscous damping  113 

Consider the dynamic equation of motion of an n-DOF structure with viscous damping at time t:  114 

𝑴𝒒̈(𝑡) + 𝑪𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝑭(𝑡) (1) 

where 𝑴, 𝑲, 𝑪 ∈ ℝ𝑛×𝑛  are mass, stiffness and damping matrices, respectively; q ∈ ℝ𝑛  is the 115 

displacement vector; 𝑭 ∈ ℝ𝑛 is the force vector.  116 

To decompose structural response with non-proportional damping, a strategy is to rewrite Eqn 1 in 117 

state space, so that the n number of second-order differential equations can be converted to 2n number 118 

of first-order differential equations.  119 

𝑨𝒙̇(𝑡) + 𝑩𝒙(𝑡) = 𝑷(𝑡) (2) 

where x∈ ℝ2𝑛 is the state vector. In order to make Eqns 1 and 2 equivalent, x, A, B, P are defined as 120 

follows, 121 

𝒙(𝑡) = {
𝒒(𝑡)
𝒒̇(𝑡)

}
2𝑛×1

 
 

(3) 

𝑨 = [
𝑪 𝑴
𝑴 𝟎

]
2𝑛×2𝑛

, 𝑩 = [
𝑲 𝟎
𝟎 −𝑴

]
2𝑛×2𝑛

, 𝑷(𝑡) = [
𝑭(𝑡)

𝟎
]

2𝑛×1
 

 

(4) 

Complex eigenvalues 𝑠𝑖 ∈ ℂ  and eigenvectors 𝝍𝑖 ∈ ℂ2𝑛  ( 𝑖 = 1,2, … ,2𝑛 ) can be obtained by 122 

solving the generalized eigenvalue problem of the state-space system, 123 

(𝑠𝑖𝑨 + 𝑩)𝝍𝑖 = 𝟎, 𝑖 = 1,2, … ,2𝑛 (5) 

where 𝝍𝑖  (𝑖 = 1,2, … ,2𝑛) are the eigenvectors normalized with respect to 𝑨 matrix, i.e., 𝜳T𝑨𝜳 =124 

𝑰2𝑛×2𝑛 with the eigenvector matrix defined as 𝜳 = [𝝍1 𝝍2     … 𝝍2𝑛] ∈ ℂ2𝑛×2𝑛. The superscript ‘T’ 125 

represents matrix transpose.  As a result, denoting the diagonal eigenvalue matrix 𝑺 =126 



diag(𝑠1, 𝑠2, … , 𝑠2𝑛) ∈ ℂ2𝑛×2𝑛, we have 𝜳T𝑩𝜳 = −𝑺.  It is also well known that the complex-valued 127 

eigenvector 𝝍𝑖 can be expressed as 128 

𝝍𝑖 = {
𝝓𝒊

𝑠𝑖𝝓𝒊
} (6) 

where 𝝓𝒊 is an 𝑛 × 1 complex vector, which represents the modal displacements. Defining 𝒛(𝑡) ∈ ℂ𝑛 129 

as the modal coordinate vector, the relationship between the state vector and modal coordinate vector is 130 

shown below, 131 

𝒙(𝑡) = 𝜳𝒛(𝑡) (7) 

Substituting Eqn 7 into Eqn 2, we get 132 

𝑨𝜳𝒛̇(𝑡) + 𝑩𝜳𝒛(𝑡) = 𝑷(𝑡)  (8) 

Pre-multiplying Eqn 8 by  𝜳T results in 133 

𝒛̇(𝑡) − 𝑺𝒛(𝑡) = 𝜳T𝑷(𝑡) (9) 

Because 𝑺 is a diagonal matrix, Eqn 9 in vector form can be easily decoupled into 2𝑛 number of 134 

scalar differential equations.  Recalling 𝝍𝑖 = {
𝝓𝒊

𝑠𝑖𝝓𝒊
} and 𝑷(𝑡) = [

𝑭(𝑡)
𝟎

], we get 135 

𝑧̇𝑖(𝑡) − 𝑠𝑖𝑧𝑖(𝑡) = 𝝓𝑖
T𝑭(𝑡),  𝑖 = 1,2, … ,2𝑛 (10) 

Furthermore, through Fourier transform, Eqn 10 can be expressed in frequency domain as, 136 

j𝜔𝑧̂𝑖(𝜔) − 𝑠𝑖𝑧̂𝑖(𝜔) = 𝝓𝑖
T𝑭̂(𝜔) (11) 

where j = √−1  is the imaginary unit; 𝜔  represents frequency. Using ℱ{∙}  to represent Fourier 137 

transform,  𝑧̂𝑖 = ℱ{𝑧𝑖} is the i-th modal coordinate and 𝑭̂ = ℱ{𝑭} is the force vector in frequency 138 

domain. 139 

Then, collect the terms in Eqn 11 and express the modal coordinate as 140 

𝑧̂𝑖(𝜔) =
𝝓𝑖

T𝑭̂(𝜔)

j𝜔 − 𝑠𝑖
 (12) 

In order to find the relationship between the input force and output displacement, we transform 141 

Eqn 7 into frequency domain and then substitute Eqn 12 into it, 142 



𝒙̂(𝜔) = 𝜳𝒛̂(𝜔) = ∑ 𝝍𝑖𝑧̂𝑖(𝜔)

2𝑛

𝑖=1

= ∑
𝝍𝑖𝝓𝑖

T𝑭̂(𝜔)

j𝜔 − 𝑠𝑖

2𝑛

𝑖=1

 (13) 

As shown in Eqn 3, the upper half of the state vector corresponds to displacement. So the frequency 143 

domain displacement 𝒒̂ can be expressed as below,  144 

𝒒̂(𝜔) = ∑
𝝓𝑖𝝓𝑖

T𝑭̂(𝜔)

j𝜔 − 𝑠𝑖

2𝑛

𝑖=1

 = 𝑯(𝜔)𝑭̂(𝜔) (14) 

Base on the derivation, 𝑯 = ∑
𝝓𝑖𝝓𝑖

T

j𝜔−𝑠𝑖

2𝑛
𝑖=1 ∈ ℂ𝑛×𝑛  is the receptance (displacement) FRF matrix, 145 

which represents the mapping from force input to displacement output. 146 

Eqn 15 shows the (𝑟, 𝑒)  entry in the receptance matrix, which represents the input-output 147 

relationship from excitation at the e-th DOF to the response at the r-th DOF. 148 

𝐻𝑟,𝑒(𝜔) = ∑
𝜙𝑟,𝑖𝜙𝑒,𝑖

j𝜔 − 𝑠𝑖

2𝑛

𝑖=1

 (15) 

where 𝜙𝑟,𝑖  and 𝜙𝑒,𝑖  are the r-th and e-th entry of the i-th complex modal displacement vector 𝝓𝑖 , 149 

respectively.  150 

To derive the FRFs from ground excitation to structural response, a similar approach is adopted as 151 

used by Hong et al. (2016). For an n-DOF shear-frame structure, the displacement at DOF-r caused by 152 

ground acceleration (𝐴g) is calculated as the summation of all contributions to displacement at DOF-r 153 

caused by the equivalent earthquake forces at all DOFs. Therefore, the analytical form of the FRFs with 154 

ground excitation can be extended from Eqn 15.  Let 𝑋𝑟,𝑒(𝜔) represent displacements at DOF-r due to 155 

𝐹𝑒(𝜔), the excitation at DOF-e in frequency domain; and 𝑚𝑒 be the lumped mass at DOF-e. 156 

𝑋𝑟,g(𝜔) = ∑ 𝑋𝑟,𝑒(𝜔)

𝑛

𝑒=1

= ∑ 𝐻𝑟,𝑒(𝜔)𝐹𝑒(ω)

𝑛

𝑒=1

= ∑ −𝐻𝑟,𝑒(𝜔)𝐴g(𝜔)

𝑛

𝑒=1

𝑚𝑒 (16) 

The receptance for response at location r due to ground excitation can be derived from Eqn 16 : 157 

𝐻𝑟,g(𝜔) =
𝑋𝑟,g(𝜔)

𝐴g(ω)
= ∑ −𝐻𝑟,𝑒(𝜔)

𝑛

𝑒=1

𝑚𝑒 = ∑
−𝜙𝑟,𝑖 ∑ 𝑚𝑒

𝑛
𝑒=1 𝜙𝑒,𝑖

j𝜔 − 𝑠𝑖

2𝑛

𝑖=1

 (17)  



For other types of measurement data besides displacement, FRF formulation for ground excitation 158 

can be easily changed to other forms.  These include the mobility, 𝑌𝑟,g(𝜔), which represents the velocity 159 

response, and accelerance, 𝐴𝑟,g(𝜔), which represents the acceleration response. 160 

𝑌𝑟,g(𝜔) = j𝜔𝐻𝑟,g(𝜔) (18) 

𝐴𝑟,g(𝜔) = −𝜔2𝐻𝑟,g(𝜔) (19) 

 161 

2.2 Calculation of frequency response function from experimental data 162 

In a large number of literatures related to FE model updating through FRFs, researchers only 163 

devoted their efforts in analytical FRF formulation rather than on how to calculate the experimental FRF 164 

through test data.  It is well know that if the signal is polluted by noise, the model updating results are 165 

easy affected. However, measurement noise is impossible to avoid in experimental testing, which calls 166 

for the need of advanced FRF estimators to calculate the experimental FRFs. Researchers can choose 167 

different estimators to calculate the experimental FRF depending on their needs.   For convenience, H1 168 

estimator (Schoukens and Pintelon 1990), as one of the most commonly used, is adopted here.  169 

𝐻1(𝜔) =
𝑆𝑥𝑦(𝜔)

𝑆𝑥𝑥(𝜔)
 (20) 

where 𝑆𝑥𝑦 is the cross-spectral density between the excitation force and response signal; 𝑆𝑥𝑥 is the auto-170 

spectral density of the response signal. 171 

 172 

3 Frequency response function-based model updating approach and optimization 173 

procedures 174 

3.1 Analytical vector form of frequency response functions for model updating 175 

Because of the damping effect, the FRF formulations in Eqns 17 to 19 are complex-valued. 176 

Experiences suggest that the use of FRF magnitude (i.e. 𝐻̅𝑟,g(𝜔), 𝐴̅𝑟,g(𝜔)) provide better results than 177 

the use of either the real part or the imaginary part of FRF or their combinations in the model updating 178 

process. 179 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Schoukens.QT.&newsearch=true


𝐻̅𝑟,g(𝜔) = |𝐻𝑟,g(𝜔)| (21) 

The expression in Eqn 21 is a scalar representing magnitude evaluated at frequency 𝜔.  To include 180 

FRF values at multiple frequency points of interest, as well as FRFs from multiple response DOFs, a 181 

long vector is formulated as below, 182 

𝑯Ana = { [𝐻̅𝑟𝑎,g(𝜔1), ⋯ , 𝐻̅𝑟𝑎,g(𝜔𝑛𝜔
)], ⋯ , [𝐻̅𝑟𝑝,g(𝜔1), ⋯ , 𝐻̅𝑟𝑝,g(𝜔𝑛𝜔

)]}
T
 (22) 

The subscripts ra, …, rp represent different response DOFs. ωi (i =1,…, nω ) is an interested 183 

frequency point, an nω is the total number of interested frequency points.   184 

The main objective of the model updating is to minimize the difference between analytical and 185 

experimental FRFs. HAna is the long analytical FRF vector, and HExp is the experimental counterpart. 186 

Both HExp and HAna should be written in the same sequence as show in Eqn 22. 187 

 188 

3.2 Frequency response function-based model updating  189 

For a linear structure, the stiffness and mass matrices can be expressed as matrix functions of the 190 

updating variables 𝜶 ∈ ℝ𝑛𝛼 and ∈ ℝ𝑛𝛽 , respectively. Notation nα and nβ represent the total number of 191 

updating variables associated with stiffness and mass, respectively; the r-th entry of 𝜶 and 𝜷,  𝛼𝑟 and 192 

𝛽𝑟  are the relative change percentage associated with physical parameters to be updated, such as 193 

Young’s modulus, support spring stiffness and mass density, etc. 194 

𝑲 =  𝑲0 + ∑ 𝛼𝑟𝑲0,𝑟

𝑛𝛼

𝑟=1

 (23) 

𝑴 =  𝑴0 + ∑ 𝛽𝑟𝑴0,𝑟

𝑛𝛽

𝑟=1

 (24) 

where K0 and M0 are the constant nominal stiffness and mass matrices, respectively, as the starting point 195 

of the modeling; K0,r and M0,r are the constant influence matrices which corresponding to αr and βr, 196 

respectively.  197 

In this research, general viscous damping is assumed for simulating more practical structural 198 

system. As mentioned by Chopra (2001), it is impractical to build the damping matrix in the form of  199 



building stiffness matrix. Therefore, every entry in the damping matrix can be defined as an optimization 200 

variable. In order to reduce the number of the damping updating variables, the damping matrix is 201 

constrained to be symmetric positive definite (denoted as 𝑪 > 0). 202 

The complete optimization problem is provided as follows. 203 

minimize     ‖𝑯Ana(𝜶, 𝜷, 𝑪) − 𝑯Exp‖
2
 (25a) 

subject to     (𝑠𝑖𝑨 + 𝑩)𝝍𝑖 = 𝟎 (25b) 

                       𝑯Ana = { [𝐻̅𝑟𝑎,g(𝜔1), ⋯ , 𝐻̅𝑟𝑎,g(𝜔𝑛𝜔
)], ⋯ , [𝐻̅𝑟𝑝,g(𝜔1), ⋯ , 𝐻̅𝑟𝑝,g(𝜔𝑛𝜔

)]}
T

 (25c) 

                       𝐻𝑟,g(𝜔) = ∑
−𝜙𝑟,𝑖 ∑ 𝑚𝑒

𝑛
𝑒=1 𝜙𝑒,𝑖

j𝜔 − 𝑠𝑖

𝑚

𝑖=1

 (25d) 

                       𝜶l ≤ 𝜶 ≤ 𝜶u ;  𝜷l ≤ 𝜷 ≤ 𝜷u  (25e) 

                     𝑪 > 0 (25f) 

where ‖∙‖ can be any norm function; α, β, C are the selected optimization variables. Lower bound 204 

(superscript l) and upper bound (superscript u) are set for those updating variables corresponding to 205 

physical parameters. m is the total number of analytical modes used in model updating. 206 

 207 

3.3 Optimization procedures 208 

The frequency response function-based model updating approach is formulated as a constrained 209 

optimization problem in Eqn 25. There are several optimization algorithms that can be utilized for 210 

finding the optimum value for the variables, such as nonlinear least-square, particle swarm and Newton 211 

method, etc. In this research, a constrained nonlinear multivariable function solver ‘fmincon’ in 212 

MATLAB optimization toolbox (Math Works Inc. 2015) is adopted for solving the problem. In general, 213 

the optimization problem in Eqn 25 is non-convex and there is no optimization algorithm can guarantee 214 

the global optimality of the solution. In order to increase the possibility of finding the global optimal 215 

value for the problem, ‘Global Search’ in MATLAB is recommended to use together with ‘fmincon’.  216 

 3.3.1 ‘fmincon’ in MATLAB 217 



The solver ‘fmincon’ seeks a minimum of the objective function value to match the analytical FRFs 218 

with the experimental FRFs. One of the many advantages is that both equality and inequality constraints 219 

are allowed in this solver. In addition, the lower and upper bounds for optimization variables are 220 

allowed. Four algorithms are implemented in ‘fmincon’ optimization solver, including the trust region 221 

reflective algorithm, active set algorithm, sequential quadratic programming (SQP) algorithm and 222 

interior-point algorithm. Among them, the trust region reflective algorithm needs to provide gradient 223 

information of the objective function by the user.  From this point of view, the algorithm is not suitable 224 

for those objective functions whose gradients are difficult to explicitly write in closed form. Other than 225 

this limitation, the trust region reflective algorithm allows user to set either bounds or linear equality 226 

constraints. Active set algorithm and SQP algorithm are not suitable for large scale problem. Since the 227 

interior-point algorithm does not have obvious drawbacks, it is adopted as the first trial. The interior-228 

point algorithm is essentially a quasi-Newton method, which calculates the Hessian approximation by 229 

the BFGS algorithm. The interior-point algorithm will first attempt a direct-step to solve the KKT 230 

conditions; if unsuccessful, a conjugate-gradient search will be adopted instead. When numerically 231 

evaluating the gradient, based on the author’s experience, the minimum change of updating variables 232 

(‘DiffMinChange’ option) can be set comparatively larger for a highly nonlinear optimization problem. 233 

Allowing larger minimum change makes the gradient calculation more robust against inaccurate 234 

objective function evaluations due to numerical noises.  235 

3.3.2 ‘Global Search’ in MATLAB 236 

Because of the non-convexity of the objective function, the ‘fmincon’ solver may easily get trapped 237 

into a local minimum or even stop near the initial starting point. In order to increase the chance to find 238 

a more optimal solution for the objective function, the optimization procedure can be started from many 239 

initial points. ‘Global Search’ in MATLAB as a global optimization toolbox can help generate many 240 

initial points for local solvers using a scatter-search algorithm. It analyzes the initial points and only 241 

accept those points who can improve the optimization results. The drawback of ‘Global Search’ in 242 

MATALB is that it can only run together with local solver ‘fmincon’. The number of starting points can 243 

be set by experience. The more starting points one uses, the higher the chance is in finding a better 244 



solution with a smaller objective function value.  On the other hand, more starting points usually 245 

consume more computing time.  246 

 247 

4 Experimental validation 248 

In this section, the performance of the FRF-based model updating approach is validated through a 249 

four-story shear-frame laboratory structure. How to select the frequency points for matching the FRFs 250 

is also discussed. 251 

4.1 Shake table (ground excitation) test  252 

The test structure shown in Figure 1 is mounted on a small shake table. All the column bars and 253 

floor plates are made of the same aluminum material. Every floor plate has the same mass 4.64kg.  As 254 

initial starting point for mass variables, this number does not include the mass of sensor instrumentation 255 

on each floor; the model updating is expected to update the total mass so that equivalently the 256 

instrumentation mass is identified through updating. Every story has 8 thin column bars riveted to the 257 

plate. The rectangular section is 0.0254m × 0.00159m. The Young’s modulus of the material is 63GPa.  258 

The total height of the structure is 1.182m (0.305m×3 + 0.267m). Fixed connections are applied at the 259 

bottom of the every column. This structure can be idealized as a 4-DOF system since every floor can be 260 

taken as a rigid mass, and the lateral stiffness are mainly provided by bending of the columns.  The 261 

model updating is expected to identify the inter-story shear stiffness provided by the columns. There are 262 

in total 5 accelerometers and 5 linear variable differential transformers (LVDT) installed on the structure 263 

for measuring the vibration. The accelerometer and LVDT on the same floor are interfaced with one 264 

wireless sensing system, Martlet (Kane et al. 2014). More detailed descriptions of the structure and 265 

sensors can be found in Hong et al. (2016). 266 

During the shake table test, the ground earthquake is simulated by a chirp excitation which changes 267 

from 0Hz to 10Hz within 60s. The sampling frequency of the Martlet is set to be 200Hz. Figure 2 shows 268 

the measured ground excitation time history. To get enough FRF data for model updating, the 269 

experimental accelerances and receptances are calculated using the measured acceleration and 270 



displacement response on every floor with the ground excitation, respectively. Figure 3 shows 271 

acceleration and displacement responses of the 4th floor. 272 

4.2 Frequency points selection  273 

Figure 4 and figure 5 show the overlay plots of accelerances and receptances in frequency domain, 274 

respectively. In order to illustrate the resonance areas more clearly, all FRFs are plotted in dB form. 275 

There are 4 obvious peaks which correspond to 4 resonant frequencies. Although a large number of FRF 276 

points can be obtained from these curves, it is not recommended to use all frequency points for model 277 

updating. First, we notice the regions away from resonances are not as clean as the resonant areas, 278 

because the influence of sensor noise is more predominant at the regions with low energy near anti-279 

resonances. FRF data in such regions with low signal-to-noise ratio (SNR) negatively affect the model 280 

updating accuracy, and thus, should not be used for matching with the analytical FRFs towards model 281 

updating. Since damping parameters in this structure are important optimization variables and damping 282 

effect mainly manifests around the resonances, the peak areas of each FRF curve are chosen as the target 283 

for matching the analytical FRFs. From our experience, half-power bandwidth method is recommended 284 

to identify the target frequency points around each resonance.  Esfandiari et al. (2016) mentioned the 285 

importance of using FRF data in high frequency range for model updating, because high frequency 286 

corresponds to local structural vibration patterns.  Therefore, it would be better to include the 4th peak 287 

(although they have relatively low amplitude) for model updating. In this study, the FRF calculated from 288 

responses on all floors will be used for a updating, although the updating can still be performed using 289 

data from only some floors. 290 

4.3 Model updating result 291 

For this 4-story structure, the optimization variables include the inter-story shear stiffness of each 292 

floor, the mass of each floor, and each entry of the damping matrix. Mainly contributed by shear stiffness 293 

from the fixed-end columns, the initial story stiffness values are calculated based on the nominal 294 

Young’s modulus of the material and the fix-end assumptions. The initial mass value is the 4.64 kg plate 295 

mass. The reason to choose the mass of each floor as updating variables is that the mass of sensor 296 

instrumentation cannot be neglected on this laboratory-scale structure. It is easy to find that mass and 297 



stiffness information cannot be all updated through most modal property-based updating approaches, 298 

because of the scaling effect to stiffness and mass in the eigenvalue equation. Unlike these modal 299 

property-based updating approaches, the use of eigenvectors normalized with respect to 𝑨 matrix (Eqn 300 

5) prevents the scaling effect, allowing us to update all mass and stiffness values simultaneously. The 301 

lower bounds and upper bounds for mass and stiffness allow the variables to change in a reasonable 302 

range.  303 

Table 1 summarizes the model updating results for the variables related to mass and stiffness. 304 

Analytical receptances and accelerances are updated through Eqn 25, respectively.  In the last row of 305 

Table 1, the average updated values of mass and stiffness variables are calculated. Since damping 306 

updating is most difficult, we set the initial starting damping matrix as a Rayleigh damping matrix. The 307 

Rayleigh damping coefficients are chosen based on experience. In addition, during the updating process, 308 

the lower bounds and upper bounds for damping updating variables are set to be relatively large. 309 

Figure 6 shows an example of the updating FRF plots using the proposed model updating approach. 310 

Figure 6(a) compares the initial, the experimental and updated accelerance 𝑨3,g. Figure 6(b) shows the 311 

comparison for receptance 𝑯3,g. The comparison plots demonstrate that the proposed approach is able 312 

to well match analytical FRFs with experimental ones.  In particular, the peak areas for these updated 313 

FRF curves can match well with the peak areas of experimental FRF curves.  Because damping controls 314 

the amplitude of the FRF at frequency points close to resonances, this result shows damping of the 315 

structure is updated with good accuracy. The frequency domain assurance criterion (FDAC) (Pascual et 316 

al. 1997) value can be utilized to compare the similarity of the peak areas between the updated and 317 

experimental FRFs. A value 1 means perfect correlation, 0 means no correlation at all. The FDAC value 318 

in Figure 6(a) is 0.987 and the FDAC value in Figure 6(b) is 0.991. 319 

In order to further verify the model updating results, a time domain comparison is also conducted. 320 

The average value of each optimization variable is used for building a new analytical model; the 321 

measured ground acceleration is fed into the model for simulating dynamic responses. Figure 7(a) shows 322 

an overall comparison between the simulated acceleration (from the new model) and the experimental 323 

acceleration on the 4th floor. Figure 7(b) is a close-up comparison for a three-second duration with the 324 



highest amplitude, demonstrating a close match between simulated and experimental time histories. In 325 

addition, Figure 8(a) shows the overall comparison between the simulated displacement from the new 326 

model and the experimental displacement on the same floor. Figure 8(b) also gives a close-up 327 

comparison. All figures illustrate excellent agreement between the simulated results and the 328 

experimental data, which demonstrates the ability of the proposed FRF-based model updating approach 329 

in obtaining an accurate FE model to represent the structure. 330 

4.4 Performance of the optimization toolbox 331 

As discussed in section 3.3, ‘fmincon’ and ‘Global Search’ in MATLAB toolbox are shown to be 332 

suitable for solving the optimization problem in this study. One of the biggest advantages is the 333 

simplicity for implementation. For this research, the convergence limits for objective function value and 334 

each optimization variable are set as 10-6 and 10-8, respectively. In order to achieve more optimal 335 

updating results, a comparatively large number (10,000) of trial starting points are adopted for ‘Global 336 

Search’.  Although more trial points mean higher time consumption, the inherent scatter search 337 

algorithm automatically eliminates the less promising starting points, effectively reducing the 338 

computation. The results shown in section 4.3 indicate good performance of the optimization toolbox 339 

for updating the 4-story structure. However, for more complex structures, the non-convexity of the 340 

objective function may be more significant, thus the optimization difficulty can increase accordingly.   341 

 342 

5 Summary and future work 343 

A summary of this work is first provided as follows: 344 

1) The proposed FRF-based model updating approach has been investigated through a laboratory 345 

structure. In order to consider general viscous damping, the analytical formulation of FRF was derived 346 

in state space. Unlike other FRF-based model updating approaches, the proposed approach does not 347 

require the analytical FRF sensitivity matrix (which is impossible or difficult to get in most cases) for 348 

each updating variable. No model reduction or modal expansion is needed.  349 

2) The proposed model updating approach can be easily implemented using state-of-the-art 350 

optimization toolboxes. MATLAB optimization solvers ‘fmincon’ and ‘Global Search’ have been 351 



carefully discussed. Leveraging these optimization techniques, it is more likely to find an objective 352 

function value closer to the global minimal for the non-convex problem.  353 

3) The proposed approach was successfully applied on the model updating of a 4-story structure. 354 

Two different types of measured FRFs (accelerance and receptance) from a shake table test are used in 355 

the updating process. The criterion for choosing appropriate frequency ranges has been discussed 356 

through this study. The results show that the FRFs of the updated model very closely match with the 357 

experimentally measured FRFs of the actual structure. Furthermore, a time-domain comparison between 358 

the simulated response and experimental response was conducted to verify the effectiveness of the 359 

model updating. 360 

In the future, the FRF-based FE model updating will be performed on an actual space frame bridge, 361 

using field measurement data.  More optimization algorithms will be studied for achieving better 362 

updating result. 363 

 364 

Acknowledgement 365 

This research is partially supported by the National Natural Science Foundation of China (51508474) and the 366 

China Scholarship Council. The third author acknowledges the support from U.S. National Science 367 

Foundation (CMMI-1150700). The authors also wish to express their gratitude to Xinjun Dong and Xi Liu 368 

in Georgia Institute of Technology for their assistance. Any opinions, findings, and conclusions or 369 

recommendations expressed in this publication belong to those authors and do not necessarily reflect the view 370 

of the sponsors. 371 

 372 

 373 

References 374 

Antoni J., Wagstaff P., Henrio J. C. (2004) “Hα-a consistent estimator for frequency response functions with 375 

input and output noise”, IEEE transactions on instrumentation and measurement, Vol. 53, No. 2, pp. 457–376 

465. 377 

Asma F., Bouazzouni A. (2005). “Finite element model updating using FRF measurements”, Shock and 378 



Vibration, Vol. 12, No. 5, pp. 377–388. 379 

Avitabile P., O'callahan J. (2001). “Dynamic expansion of frequency response functions for the full FRF 380 

matrix”, Proceedings of SPIE: the International Society for Optical Engineering, pp. 887–896. 381 

Brito, V. L., Pena, A. N., Pimentel, R. L., and de Brito, J. L. V. (2014). “Modal Tests and Model Updating for 382 

Vibration Analysis of Temporary Grandstand”, Advances in Structural Engineering, vol. 17, No. 5, pp. 383 

721–734. 384 

Chopra A. K. (2001). Dynamics of structures: theory and applications to earthquake engineering, Prentice 385 

Hall Pubishers, Upper Saddle River. 386 

Esfandiari A., Rahai A., Sanayei M., Bakhtiari-nejad, F. (2016). “Model updating of a concrete beam with 387 

extensive distributed damage using experimental frequency response function”, Journal of Bridge 388 

Engineering, Vol. 21, No. 4, pp. 04015081. 389 

Friswell, M. I. and Mottershead, J. E. 1995. Finite element model updating in structural dynamics, Kluwer 390 

Academic Publishers, Dordrecht & Boston. 391 

Hernandez, E. M. and Bernal, D. (2013). “Iterative finite element model updating in the time 392 

domain”, Mechanical Systems and Signal Processing, vol. 34, No. 1, pp. 39–46.  393 

Hong Y., Liu X., Dong X., Wang Y., Pu Q. (2016). “Experimental model updating using frequency response 394 

functions”, Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical, and 395 

Aerospace Systems, J.P. Lynch, ed., Las Vegas, March, 2016, pp. 980325. 396 

Imregun, M. and Visser, W. J. (1991). “A review of model updating techniques”, The Shock and Vibration 397 

Digest, Vol. 23, No.1, pp. 9–20. 398 

Imregun M., Sanliturk K. Y., Ewins D. J. (1995). “Finite element model updating using frequency response 399 

function data: II. Case study on a medium-size finite element model”, Mechanical Systems and Signal 400 

Processing, Vol.9, No.2, pp. 203–213. 401 

Jaishi B. and Ren W. X. (2005). “Structural finite element model updating using ambient vibration test 402 

results”, Journal of Structural Engineering, Vol. 131, No. 4, pp. 617–628. 403 

Kane M., Zhu D., Hirose M., Dong X., Winter B., Häckell M., Lynch J. P., Wang Y. and Swartz A. (2014). 404 

“Development of an extensible dual-core wireless sensing node for cyber-physical systems”, SPIE Smart 405 

Structures and Materials+ Nondestructive Evaluation and Health Monitoring, San Diego, April, 406 

http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2219364&Name=Yu+Hong
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2219364&Name=Xi+Liu
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2219364&Name=Qianhui+Pu


pp. 90611U-90611U-19.  407 

Lin R. M. and Ewins D. J. (1994). “Analytical model improvement using frequency response functions”, 408 

Mechanical Systems and Signal Processing, Vol.8, No.4, pp. 437–458. 409 

Lin R. M. and Zhu J. (2009). “On the relationship between viscous and hysteretic damping models and the 410 

importance of correct interpretation for system identification”, Journal of Sound and Vibration, Vol.325, 411 

No. 1, pp. 14–33. 412 

Lu Y., Tu Z. (2004). “A two-level neural network approach for dynamic FE model updating including 413 

damping”, Journal of Sound and Vibration, Vol.275, No. 3, pp. 931–952. 414 

MathWorks Inc. (2015). Optimization ToolboxTM User's Guide, R2015b ed. Natick, MA. 415 

Pascual, R., Golinval J. C., Razeto M. (1997). “A frequency domain correlation technique for model 416 

correlation and updating”, Proceedings of SPIE: The International Society for Optical 417 

Engineering, February, pp. 587-592. 418 

Pradhan S. and Modak S. V. (2012). “Normal response function method for mass and stiffness matrix 419 

updating using complex FRFs”, Mechanical Systems and Signal Processing, Vol.32, pp. 232–250. 420 

Schoukens J., Pintelon R. (1990). “Measurement of frequency response functions in noisy environments”, 421 

IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 6, pp. 905–909. 422 

Sipple J. D. and Sanayei M. (2014). “Finite element model updating using frequency response functions and 423 

numerical sensitivities”, Structural Health Monitoring, Vol. 21, No. 5, pp. 784–802. 424 

Tshilidzi M. and Sibusiso S. (2005). “Finite element model updating using bayesian framework and modal 425 

properties”, Journal of Aircraft, Vol. 42, No. 1, pp. 275–278. 426 

Yang, J. N., Huang H. W., Pan S. W. (2009) “Adaptive quadratic sum-squares error for structural damage 427 

identification”, Journal of Engineering Mechanics-ASCE, vol.135, No.2, pp. 67–77. 428 

Zhu, D., Dong, X. and Wang Y. (2016) “Substructure Stiffness and Mass Updating through Minimization of 429 

Modal Dynamic Residuals”, Journal of Engineering Mechanics, vol. 142, No.5, pp. 04016013. 430 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Schoukens.QT.&newsearch=true


shaker 

excitation

modal 

shaker

LVDT #4

LVDT #3

LVDT #2

LVDT #1

LVDT #0

accelerometer #4

accelerometer #3

accelerometer #2

accelerometer #1

accelerometer #0

 
 

Figure 1. Frame structure with experimental setup



 
Figure 2. Ground excitation time history 
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Figure 3. Acceleration and displacement responses of the 4th floor 
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Figure 4. Overlay of accelerance plots for all floors 
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Figure 5. Overlay of receptance plots for all floors
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(a) Accelerance 𝑨3,g 

 

 
(b) Receptance 𝑯3,g 

 

Figure 6. Comparison of the initial, the experimental and the updated FRFs 
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(a) Acceleration comparison on 4th floor 

 

 
(b) Close-up acceleration comparison on 4th floor 

 

Figure 7. Comparison between the experimental and simulated acceleration
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(a) Displacement comparison on 4th floor 

 

 
(b) Close-up displacement comparison on 4th floor 

 

Figure 8 Comparison between the experimental and simulated displacement 
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Table 1 Model updating results from shake table test. 

Parameter (kg or N/m) 𝑚1 𝑚2 𝑚3 𝑚4 𝑘1 𝑘2 𝑘3 𝑘4 

Initial  4.64 4.64 4.64 4.64 1019 1217 1420 2473 

Updated (Accelerance)  5.16 5.14 4.94 5.14 1049.71 1282.53 1385.56 2732.56 

Updated (Receptance) 5.16 5.16 4.94 5.14 1060.25 1285.84 1368.70 2743.77 

Average of the updated 5.16 5.15 4.94 5.14 1054.98 1284.19 1377.13 2738.17 

 
 

 


