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Abstract: Hysteresis is of critical importance to structural safety under severe dynamic loading 

conditions. One of the widely used hysteretic models for civil structures is the Bouc-Wen model, 

whose effectiveness depends on suitable model parameters. The locally non-differentiable 

governing equation of the conventional Bouc-Wen model poses difficulty on existing 

identification algorithms, especially the extended Kalman filter (EKF), which relies on linearized 

system equations to propagate state estimates and covariance. In addition, the standard EKF 

usually does not incorporate parameter constraints, and therefore may result in unreasonable 

estimates. In this paper, a modified and differentiable Bouc-Wen model, together with a 

constrained extended Kalman filter (CEKF), is proposed to identify the hysteretic model 

parameters in a reliable way. The partial derivatives of the differentiable Bouc-Wen model with 

respect to hysteretic parameters can be easily calculated for implementing the identification 

algorithm. CEKF restricts the Kalman gain to ensure that the estimates of parameters satisfy 

constraints from physical laws. Parameter identification using simulated and experimental data 

collected from a four-story structure demonstrates that CEKF can achieve more reliable 

identification results than the standard EKF.  
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1 Introduction 

Nonlinearity and inelasticity are usually encountered in structures under severe dynamic loading, 

such as earthquake and strong wind. Reliable modeling of structures subject to such extreme events 

is of critical importance to structural damage assessment and post event maintenance. These 

nonlinear and inelastic structural behaviors due to dynamic loading usually exhibit in a form of 

hysteresis, which refers to the path-dependent relationship between restoring force and 

deformation. The area of the hysteresis loop represents the dissipated energy during the loading 

duration. Detailed modeling of hysteretic behaviors of structures is usually too complicated for 

engineering application [1]. In addition, the obtained models are always problem dependent and 

difficult to be extended for general usage. For these reasons, phenomenological models are 

developed to characterize the hysteretic features. A survey on the phenomenological models for 

hysteresis can be found in [2]. Among these models, the Bouc-Wen model has been extensively 

used in civil engineering to describe the hysteresis phenomenon of, for example, 

magnetorheological (MR) dampers [3-5], beam-column joints [6, 7], and soil-structure interaction 

[8].  

The governing equation of the Bouc-Wen model is a first-order nonlinear differential equation, the 

parameters of which control the shape and size of the hysteresis loop. In order to accurately 

describe the hysteretic properties of structures, the parameters in the Bouc-Wen model need to be 

identified from the output and/or the input of the structural system. During past decade, various 

system identification algorithms have been proposed and investigated to tune the hysteretic 

parameters. These algorithms include evolutionary algorithms (EAs) [9-12], least-square 

estimation (LSE) [13-15], sequential Monte Carlo methods [16-19], etc. Inspired by biological 

evolution, EAs search the solution for an optimization problem stochastically. EAs can be used for 
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complex optimization problems but the solution is sensitive to initial population and affected by 

the problem size. In addition, EAs are metaheuristic optimization algorithms and cannot guarantee 

optimality [20]. LSE methods estimate the model parameters according to measurements and 

structural responses including acceleration, velocity, and displacement. The requirement on 

velocity information limits the application of LSE methods. Sequential Monte Carlo methods rely 

on a large number of sampling points to estimate parameters together with system states. Although 

the methods perform well on nonlinear systems with various noise models, the computation 

complexity limits the application on small or midsize problems. 

The nonlinear versions of Kalman filter, especially extended Kalman filter (EKF) and unscented 

Kalman filter (UKF), are also commonly used identification algorithms for hysteretic systems. 

Kalman filter produces a posteriori probabilistic estimates of unknown state variables based on 

system equations and noisy measurements. Parameter identification is performed by treating the 

model parameters as augmented system states and thus, estimated through the measurement data.  

EKF linearizes the system equation and measurement equation around the current optimal estimate, 

and updates the estimate based on the linearized equations. It has been shown that EKF works well 

for system with mild nonlinearity but often provides unreliable estimates for highly nonlinear 

systems due to the large linearization error. A powerful alternative to EKF is UKF which relies on 

the unscented transformation for estimating system states and parameters. UKF is designed based 

on the intuition that it should be easier to approximate a given distribution than to approximate an 

arbitrary nonlinear function. At each iteration, UKF generates a sample distribution by a set of 

sampling points called sigma points, which capture the mean and covariance of the a posteriori 

distribution of system states. These sigma points can be easily propagated through the nonlinear 

system equation and used for updating the estimate. UKF has arisen in many engineering 
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applications [21-23]. Extensive research has also been conducted to evaluate the performance of 

EKF and UKF on parameter identification of the Bouc-Wen model. Wu and Smyth compared EKF 

and UKF on updating parameters of a single degree of freedom (SDOF) Bouc-Wen system, and 

showed that UKF outperformed EKF in estimation accuracy for this highly nonlinear system [24]. 

Although the large linearization error limits the application of the standard EKF on parameter 

identification for highly nonlinear systems, some researchers have investigated techniques to 

improve the accuracy of EKF. Applying constraints on parameters during the estimation process 

is one effective technique. Yang and Ma proposed a constrained EKF, in which the constrained 

parameters are replaced by parameters in the entire solution space through specific functions, for 

example sinusoidal functions and square function [25]. In this way, the original problem has been 

converted to a problem of estimating new parameters using the standard EKF. However, these 

functions are not one-to-one functions and thus multiple values of a new parameter could 

correspond to the same value of the original parameter. This fact increases the difficulty of accurate 

parameter estimation. Sen and Bhattacharya investigated a constrained EKF which restricts the 

Kalman gain to ensure that the updated estimate lies within the constrained space [26]. This 

restricted Kalman gain is obtained by solving a constrained optimization problem, which can be 

computational expensive. Gupta and Hauser [27] discussed two methods to incorporate constraints 

in Kalman filter, among which one method projects the updated state estimate onto the constrained 

domain, and the other method restricts the Kalman gain so that the updated estimate satisfies the 

constraints. Although developed for Kalman filter, these two methods can be conveniently 

implemented in EKF. This paper adopts the idea of restricting the Kalman gain and derives the 

analytical solution of the Kalman gain when there are inequality constraints. With the explicit 

expression of the Kalman gain, the estimation process can be significantly accelerated. The 
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proposed constrained EKF (CEKF) is validated through both numerical simulation and laboratory 

experiment.   

Another difficulty of applying EKF on hysteretic parameter identification is that the governing 

equation of the Bouc-Wen model is non-differentiable. As EKF requires to linearize system 

equation to update state estimate and covariance, strictly speaking, EKF is not applicable for 

parameter identification of the Bouc-Wen model. To circumvent this challenge, most of the 

existing algorithms use numerical approximation to differentiate the Bouc-Wen system equations 

[24]. This paper analyzes factors contributing to the non-differentiability of the widely used Bouc-

Wen model and proposes a modified and differentiable Bouc-Wen model. Using the proposed 

model, partial derivatives of the system equations with respect to hysteretic parameters can be 

analytically and explicitly calculated for the implementation of EKF and CEKF.  

The rest of paper is organized as follows. Section 2 discusses the contributing factors for the non-

differentiability of the widely used Bouc-Wen model, and proposes a differentiable Bouc-Wen 

model accordingly. Section 3 briefly reviews EKF algorithm and presents CEKF algorithm for 

hysteretic parameter identification. Section 4 shows numerical simulations and a laboratory 

experiment validating the proposed parameter identification method. In the end, Section 5 provides 

a summary and future work.  

2 Hysteresis and the Bouc-Wen model 

A vector variable 𝛉 ∈ ℝ𝑛𝛉 is used to represent various structural model parameters, including mass, 

stiffness, and damping coefficient. The equation of motion for an N-DOF structure with nonlinear 

hysteresis can be expressed as: 
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𝐌(𝛉)�̈� + 𝐂(𝛉)�̇� + 𝐫(𝛉, 𝐪, �̇�) = 𝐮 +𝐰 (1) 

where 𝐪 ∈ ℝ𝑁  is the displacement vector, 𝐌 ∈ ℝ𝑁×𝑁  is the mass matrix, 𝐂 ∈ ℝ𝑁×𝑁  is the 

damping matrix, 𝐫 ∈ ℝ𝑁 is the nonlinear restoring force vector describing hysteresis, 𝐮 ∈ ℝ𝑁 is 

the external load vector, and 𝐰 ∈ ℝ𝑁 is the input uncertainty.  

 

Fig. 1 Bouc-Wen hysteretic system with viscous damping 

Various types of hysteretic models have been developed. One of the most widely used is a 

differential model originally proposed by Bouc and later developed by Wen and other researchers. 

In this Bouc-Wen model, the restoring force 𝐫 is associated with a nonlinear first order differential 

equation. Take an SDOF Bouc-Wen hysteretic model (Fig. 1) subject to earthquake as an example. 

The governing equation of the system with mass 𝑚, damping coefficient 𝑐, stiffness 𝑘 and ground 

excitation  �̈�𝑔 is shown as: 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑧(𝑡) = −𝑚(�̈�𝑔(𝑡) + 𝑤) (2) 

Here the excitation to the system is 𝑢 = −𝑚�̈�𝑔(𝑡), and the ground acceleration input �̈�𝑔(𝑡) is 

contaminated with uncertainty 𝑤. The nonlinear restoring force is 𝑟 = 𝑘𝑧(𝑡), and 𝑧 is a hidden 

hysteretic displacement. A first-order differential equation describes the hysteretic displacement: 

�̇� = �̇� − 𝛽|�̇�||𝑧|𝑛−1𝑧 − 𝛾�̇�|𝑧|𝑛 = �̇� (1 − |𝑧|𝑛(𝛾 + 𝛽sgn(𝑧�̇�))) (3) 
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Here 𝛽 , 𝛾 , and 𝑛  are dimensionless parameters controlling the shape and magnitude of the 

hysteresis loop; sgn(∙) is the signum function. This differential model has many advantages in 

describing nonlinear hysteresis. By adjusting the parameters, this model is capable of generating a 

large variety of hysteretic loops. In order to identify proper values for the Bouc-Wen parameters, 

researchers have studied online recursive techniques that can search parameter values using real-

time dynamic response data. EKF, as one of parameter identification techniques, has been widely 

applied for this purpose [28, 29]. 

Notice that the model equation Eq. (3) is not differentiable at �̇� = 0 or 𝑧 = 0, and this singularity 

is not ideal for the linearization in EKF. Three reasons causing the non-differentiability are 

discussed as follows. 

(i) Derivative of the signum function sgn(𝑎) with respect to 𝑎 and derivative of the absolute value 

function |𝑎| with respect to 𝑎  

As the absolute function |𝑎| = sgn(𝑎) 𝑎, it suffices to only discuss the derivative of the signum 

function sgn(𝑎). This derivative is not defined at 𝑎 = 0. In order to address this problem, the 

hyperbolic tangent function tanh(∙) can be adopted to approximate the signum function sgn(∙). 

sgn(𝑎) ≈ tanh(𝜌𝑎) (4) 

Here 𝜌 > 0 is a factor controlling the curvature. Fig. 2 shows the plot of tanh(𝜌𝑎) with different 

values of 𝜌 . When the value of 𝜌  is larger, the differentiable function tanh(𝜌𝑎)  better 

approximates sgn(𝑎).  
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Fig. 2 Plot of tanh(𝜌𝑎) 

Using this approximation, the Bouc-Wen equation is then modified as: 

�̇� = �̇�(1 − (tanh(𝜌𝑧) 𝑧)𝑛(𝛾 + 𝛽 tanh(𝜌𝑧�̇�))) (5) 

(ii) Derivative of the exponential function 𝑎𝑏 with respect to 𝑎 (𝑏 < 1) 

For the term 𝑓 = (tanh(𝜌𝑧) 𝑧)𝑛 in Eq. (5), 
𝜕𝑓

𝜕𝑧
 requires taking derivative with respect to the base. 

The derivative of the exponential function 𝑎𝑏 with respect to 𝑎 is calculated as 
𝜕

𝜕𝑎
𝑎𝑏 = 𝑏𝑎𝑏−1. 

When  𝑏 < 1, the derivative is undefined at 𝑎 = 0. To avoid this singular point, we can simply 

require 𝑏 ≥ 1. Applying this constraint on the state equation of the Bouc-Wen model requires 𝑛 ≥

1, which satisfies most of engineering applications. 

(iii) Derivative of the exponential function 𝑎𝑏 with respect to 𝑏 (𝑎 = 0) 

For the term 𝑓 = (tanh(𝜌𝑧) 𝑧)𝑛 in Eq. (5), 
𝜕𝑓

𝜕𝑛
  requires taking derivative with respect to the power. 

The derivative of the exponential function 𝑎𝑏 with respect to 𝑏 is calculated as 
𝜕

𝜕𝑏
𝑎𝑏 = 𝑎𝑏 ln 𝑎, 

which is not defined for 𝑎 ≤ 0. In the system equation Eq. (5), the base of exponential functions 

is tanh(𝜌𝑧) 𝑧 which is always nonnegative. Therefore, we only need to consider the case 𝑎 = 0. 

Note that in (ii), we require 𝑏 ≥ 1. Using L'Hospital's rule, the limit of the function 𝑎𝑏 ln 𝑎, as 𝑎 

approaches 0+ can be calculated as: 
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lim
𝑎→0+

𝑎𝑏 ln 𝑎 = lim
𝑎→0+

ln 𝑎

𝑎−𝑏
= lim
𝑎→0+

𝑎−1

−𝑏𝑎−𝑏−1
= lim
𝑎→0+

𝑎𝑏

−𝑏
= 0 (6) 

In the application of EKF, we define the derivative 
𝜕

𝜕𝑏
𝑎𝑏 = 0 at 𝑎 = 0. 

3 Extended Kalman filter (EKF) 

EKF is an extension of the standard Kalman filter for optimally estimating the state of a nonlinear 

system from measurement output. Section 3.1 briefly introduces the standard EKF algorithm for 

state and parameter estimation. Section 3.2 describes the proposed constrained EKF (CEKF) 

algorithm which can prevent the estimates from being unrealistic.  

3.1 The standard EKF 

Consider a general dynamical system governed by nonlinear state-space equation as: 

�̇� = 𝒇(𝐱, 𝐮,𝐰) (7) 

where 𝐮 is known excitation applied on the system and 𝐰 ∼ 𝒩(𝟎, 𝚺𝐰) is a zero-mean white 

Gaussian process noise with covariance matrix 𝚺𝐰. At time 𝑡 = 𝑘∆𝑡, the measurement 𝐲𝑘 is given 

as: 

𝐲𝑘 = 𝒉(𝐱𝑘, 𝐮𝑘 , 𝐯𝑘) (8) 

where 𝐯𝑘 ∼ 𝒩(𝟎, 𝚺𝐯) is the zero-mean white Gaussian measurement noise with covariance matrix 

𝚺𝐯.  

The EKF estimation is separated into two main steps, i.e. measurement update step and time update 

step. In the measurement update step, the a priori estimate �̂�𝑘|𝑘−1 of the state is available. The 

predicted measurement �̂�𝑘|𝑘−1 of �̂�𝑘|𝑘−1 is estimated as: 
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�̂�𝑘|𝑘−1 = 𝒉(�̂�𝑘|𝑘−1, 𝐮𝑘 , 𝟎) (9) 

The Kalman gain matrix is calculated to minimize the trace of the covariance matrix for the a 

posteriori estimate: 

𝐋𝑘 = 𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T (𝐇𝑘

𝐱𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T + 𝐇𝑘

𝐯𝚺𝐯(𝐇𝑘
𝐯)T)

−1

 (10) 

Here 𝐇𝑘
𝐱 and 𝐇𝑘

𝐯  are the linearized matrices of the measurement equation 𝒉: 

𝐇𝑘
𝐱 =

𝜕𝒉

𝜕𝐱
|
𝐱=�̂�𝑘|𝑘−1

 
(11) 

𝐇𝑘
𝐯 =

𝜕𝒉

𝜕𝐯
|
𝐱=�̂�𝑘|𝑘−1

 
(12) 

After measurement 𝐲𝑘 is available, the a posteriori estimate �̂�𝑘|𝑘 is calculated using the Kalman 

gain matrix as: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋𝑘(𝐲𝑘 − �̂�𝑘|𝑘−1) (13) 

Along with the measurement update of the state, the covariance matrix 𝚺𝐱𝑘|𝑘  for the a posteriori 

estimate can be evaluated as: 

𝚺𝐱𝑘|𝑘 = (𝐈 − 𝐋𝑘𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝑘𝐇𝑘

𝐱)T + 𝐋𝑘𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋𝑘
T  (14) 

In the time update step, the a priori estimate �̂�𝑘+1|𝑘 of the state is predicted based on the system 

model: 
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�̂�𝑘+1|𝑘 = �̂�𝑘|𝑘 +∫ 𝑓(�̂�, 𝐮, 𝟎)𝑑𝑡
(𝑘+1)∆𝑡

𝑘∆𝑡

 (15) 

Along with the time update of the state, the covariance matrix 𝚺𝐱𝑘+1|𝑘 for the a priori estimate can 

be evaluated as [30]: 

𝚺𝐱𝑘+1|𝑘 = 𝚽𝑘
𝐱𝚺𝐱𝑘|𝑘(𝚽𝑘

𝐱)T +𝚽𝑘
𝐰𝚺𝐰(𝚽𝑘

𝐰)T (16) 

Here 𝚽𝑘
𝐱 and 𝚽𝑘

𝐰 are the state transition matrices and can be calculated by linearization of state-

space equation 𝒇: 

𝚽𝑘
𝐱 = 𝐈 +

𝜕𝒇

𝜕𝐱
|
𝐱=�̂�𝑘|𝑘

∆𝑡 
(17) 

𝚽𝑘
𝐰 =

𝜕𝒇

𝜕𝐰
|
𝐱=�̂�𝑘|𝑘

∆𝑡 
(18) 

Repeating Eq. (9) ~ Eq. (18), EKF can recursively update the system states for a nonlinear system. 

3.2 The constrained EKF 

The standard EKF on parameter identification problems finds the estimate of parameters through 

the entire unconstrained solution space.  However, in structural applications, some model 

parameters must satisfy equality or inequality constraints from physics. Without incorporating 

those constraints in the estimation process, the standard EKF may lead to infeasible solutions.  This 

section discusses an efficient approach of constrained EKF (CEKF). 

To lighten notations, denote the measurement innovation 𝐫𝑘 and innovation covariance 𝚺𝐲𝑘  at time  

𝑡 = 𝑘∆𝑡 as: 



12 

 

𝐫𝑘 = 𝐲𝑘 − �̂�𝑘|𝑘−1 (19) 

𝚺𝐲𝑘 = 𝐇𝑘
𝐱𝚺𝐱𝑘|𝑘−1(𝐇𝑘

𝐱)T + 𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T (20) 

To distinguish between the solutions without and with constraints, hereinafter we rename the 

Kalman gain matrix and the a posteriori estimate of the unconstrainted EKF, from Eq. (10) and 

Eq. (13), with a tilde sign.  

�̃�𝑘 = 𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T𝚺𝐲𝑘

−1 (21) 

�̃�𝑘|𝑘 = �̂�𝑘|𝑘−1 + �̃�𝑘𝐫𝑘 (22) 

EKF is the minimum-mean-square-error (MMSE) estimator for linearized dynamical systems. The 

Kalman gain �̃�𝑘 can be analytically derived as the solution of the following optimization problem, 

which minimizes the trace of a posteriori state covariance matrix without any constraints to the 

optimization variable 𝐋. 

minimize
𝐋

 Trace ((𝐈 − 𝐋𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝐇𝑘

𝐱)T + 𝐋𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋T) (23) 

Suppose the constraint vector function is denoted as 𝒈(∙): ℝ𝑛𝐱 → ℝ𝑛𝑐 , where 𝑛𝑐  represents the 

number of scalar constraints.  When a general constraint 𝒈(∙) ≥ 0 is imposed on the system states, 

the closed-form solution of the Kalman gain matrix is usually difficult to obtain, if not impossible.  

In this situation, an obvious way of constraining the EKF is to numerically calculate the 

constrained Kalman gain  by solving the following optimization problem. The objective function 

still minimizes the trace of the a posteriori state covariance matrix, while the constraint 𝒈(∙) ≥ 0 

is applied to the measurement-updated state estimation from Eq. (22). 
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minimize
𝐋

 Trace ((𝐈 − 𝐋𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝐇𝑘

𝐱)T + 𝐋𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋T)

subject to  𝒈(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) ≥ 0
 (24) 

Using the optimal Kalman gain matrix 𝐋∗ solved from Eq. (24), the updated a posteriori estimate 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋
∗𝐫𝑘 is guaranteed to satisfy the constraint 𝒈(�̂�𝑘|𝑘) ≥ 0. The covariance matrix 

𝚺𝐱𝑘|𝑘  corresponding to the updated a posteriori estimates can also be calculated using 𝐋∗. The 

disadvantage of this approach of constraining the EKF is that the computational cost may increase 

significantly from solving the optimization problem in Eq. (24), depending on the exact form of 

the vector function 𝒈(∙):ℝ𝑛𝐱 → ℝ𝑛𝑐. 

To achieve a more efficient and heuristic way of constraining the EKF, consider that most 

engineering applications only encounter affine constraints which can be expressed as  𝒈(𝐱) =

𝐀𝐱 − 𝐛 ≥ 𝟎. Note the “≥” symbol represents entry-wise inequality between two vectors. We 

denote 𝐀 = (
𝐚1
T

⋮
𝐚𝑛𝑐
T
) ∈ ℝ𝑛𝑐×𝑛𝐱  and 𝐛 = (

𝑏1
⋮
𝑏𝑛𝑐

) ∈ ℝ𝑛𝑐 , such that the i-th constraint is simply a 

scalar inequality 𝑔𝑖(𝐱) = 𝐚𝑖
T𝐱 − 𝑏𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛𝑐. For a feasible 𝐱, the constraint is said to 

be active if the equal sign holds, i.e. 𝐚𝑖
T𝐱 = 𝑏𝑖; the constraint is said to be inactive if instead we 

have the strict greater-than relationship 𝐚𝑖
T𝐱 − 𝑏𝑖 > 0 [31].  

Our suggested way of constraining the EKF works as follows for the affine constraint 𝒈(𝐱) =

𝐀𝐱 − 𝐛 ≥ 𝟎. Suppose that at time 𝑡 = 𝑘∆𝑡, the unconstrained a posteriori estimate �̃�𝑘|𝑘 calculated 

from Eq. (22) violates 𝑛𝑎𝑐 number of the 𝑛𝑐 inequality constraints (𝑛𝑎𝑐 ≤ 𝑛𝑐). In order to obtain 

a feasible solution, these 𝑛𝑎𝑐 number of constraints are set as active. Accordingly, we aggregate 

all the rows in A and b that correspond to these constraints (that were violated by �̃�𝑘|𝑘 = �̂�𝑘|𝑘−1 +
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�̃�𝑘𝐫𝑘) as 𝐀a ∈ ℝ
𝑛𝑎𝑐×𝑛𝐱 and 𝐛a ∈ ℝ

𝑛𝑎𝑐  respectively, i.e. where we have 𝐀a�̃�𝑘|𝑘 − 𝐛a < 𝟎. So that 

the constrained a posteriori estimate may satisfy the constraints, a new (constrained) Kalman gain 

matrix needs to be found by solving the optimization problem below. Note that to make the new 

estimate �̂�𝑘|𝑘−1 + 𝐋𝐫𝑘 “barely” satisfy these previously violated constraints concerning 𝐀a and 𝐛a, 

these constrains are set active as 𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a = 𝟎. 

minimize
𝐋

 Trace ((𝐈 − 𝐋𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝐇𝑘

𝐱)T + 𝐋𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋T)

subject to  𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a = 𝟎
 (25) 

Solution to Eq. (25) is highly efficient because closed-form analytical solution usually exists.  

Under mild assumption, the solution is given as follows and Appendix 2 details the derivation.  

The same solution is obtained by [27], where the derivation is more complicated than the process 

in Appendix 2. 

𝐋𝑘 = �̃�𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘−1 − 𝐛a)(𝐫𝑘
T𝚺𝐲𝑘

−1𝐫𝑘)
−1
𝐫𝑘
T𝚺𝐲𝑘

−1 (26) 

In addition, using this constrained optimal Kalman gain, the a posteriori estimate of CEKF, �̂�𝑘|𝑘 =

�̂�𝑘|𝑘−1 + 𝐋𝑘𝐫𝑘, is found to be related to the unconstrained EKF estimation �̃�𝑘|𝑘 as follows through 

the active/equality constraints. 

�̂�𝑘|𝑘 = �̃�𝑘|𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘 − 𝐛a) (27) 

It should be noted that this heuristic approach assumes the constrained a posteriori estimate �̂�𝑘|𝑘 

also satisfies the other (𝑛𝑐 − 𝑛𝑎𝑐) number of inactive constraints that are not required by Eq. (25).  

In other words, altogether the entire 𝒈(�̂�𝑘|𝑘) = 𝐀�̂�𝑘|𝑘 − 𝐛 ≥ 𝟎 is satisfied. Although there is no 
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guarantee the assumption always holds, this is found to be the case for the examples studied in this 

paper. Finally, the CEKF algorithm is summarized in Table 1. 

Table 1 CEKF algorithm 

Initial Estimate   

State estimate �̂�0|−1 = E[𝐱0]  

State covariance 𝚺𝐱0|−1 = E [(𝐱0 − �̂�0|−1)(𝐱0 − �̂�0|−1)
T
]  

for 𝑘 = 0, 1,⋯ , 𝑛   

 Measurement Update  

 Measurement 

innovation 
𝐫𝑘 = 𝐲𝑘 − �̂�𝑘|𝑘−1 Rept. (22) 

 Innovation 

covariance matrix 
𝚺𝐲𝑘 = 𝐇𝑘

x𝚺𝐱𝑘|𝑘−1(𝐇𝑘
x)T + 𝐇𝑘

v𝚺𝐯(𝐇𝑘
v)T Rept. (23) 

 Kalman gain �̃�𝑘 = 𝚺𝐱𝑘|𝑘−1(𝐇𝑘
x)T𝚺𝐲𝑘

−1 Rept. (24) 

 State estimate �̃�𝑘|𝑘 = �̂�𝑘|𝑘−1 + �̃�𝑘𝐫𝑘 Rept. (25) 

 Check constraints   

  if ( 𝐀�̃�𝑘|𝑘 − 𝐛 > 𝟎 is satisfied )  

  𝐋𝑘 = �̃�𝑘  

  �̂�𝑘|𝑘 = �̃�𝑘|𝑘  

 

 

else 

According to violations in 𝐀�̃�𝑘|𝑘 − 𝐛 > 𝟎, identify  𝐀a ∈ ℝ
𝑛𝑎𝑐×𝑛𝐱 and 𝐛a ∈

ℝ𝑛𝑎𝑐 for the 𝑛𝑎𝑐  number of active constraints: 𝐀a𝐱 − 𝐛a = 𝟎 in Eq. (21). 
 

 

 𝐋𝑘 = �̃�𝑘 − 𝐀a
T(𝐀a𝐀a

T)
−1
(𝐀a�̃�𝑘|𝑘−1 − 𝐛a)(𝐫𝑘

T𝚺𝐲𝑘
−1𝐫𝑘)

−1
𝐫𝑘
T𝚺𝐲𝑘

−1 Rept. (26) 

 �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐋𝑘𝐫𝑘  

  end 
 

 

 State covariance 𝚺𝐱𝑘|𝑘 = (𝐈 − 𝐋𝑘𝐇𝑘
x)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝑘𝐇𝑘

x)T + 𝐋𝑘𝐇𝑘
v𝚺𝐯(𝐇𝑘

v)T𝐋𝑘
T  Rept. (14) 

 Time Update  

 
State estimate �̂�𝑘+1|𝑘 = �̂�𝑘|𝑘 +∫ 𝑓(�̂�, 𝐮, 𝟎)𝑑𝑡

(𝑘+1)∆𝑡

𝑘∆𝑡

 Rept. (15) 

 State covariance 𝚺𝐱𝑘+1|𝑘 = 𝚽𝑘
𝐱𝚺𝐱𝑘|𝑘(𝚽𝑘

𝐱)T +𝚽𝑘
𝐰𝚺𝐰(𝚽𝑘

w)T Rept. (16) 

end loop   
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4 Application 

To validate the proposed methods, model updating using simulated and experimental data is 

conducted. Section 4.1 introduces parameter identification of an SDOF nonlinear hysteretic system. 

The proposed differentiable Bouc-Wen model is compared with the original Bouc-Wen model. 

Based on the differentiable Bouc-Wen model, parameters of an SDOF nonlinear hysteretic system 

are updated through EKF and CEKF using analytically and numerically evaluated partial 

derivatives, respectively. Section 4.2 presents parameter identification of a four-story shear 

structure using simulated data. To further investigate the performance of the proposed methods, 

parameter identification of a four-story shear structure using experimental data is conducted and 

presented in Section 4.3. 

4.1 Numerical simulation – an SDOF nonlinear hysteretic system 

4.1.1 Structural response simulation 

To demonstrate the effectiveness of the proposed differentiable Bouc-Wen model, simulation on 

an SDOF nonlinear hysteretic system (Fig. 1) is conducted. In this simulation example, system 

parameters are set as 𝑚 = 1 kg, 𝑐 = 0.3 Ns/m, 𝑘 = 12 N/m, 𝛽 = 2, 𝛾 = 1, and 𝑛 = 2 . In the 

differentiable Bouc-Wen model, the curvature controlling parameter is set as 𝜌 = 100. A scaled 

El Centro earthquake excitation of 40 s duration is applied to excite the system. The system 

responses are obtained by numerical integration using zero-order hold. Fig. 3 plots the 

displacement 𝑞, velocity �̇�, hysteretic displacement 𝑧, and the hysteretic loops using the original 

Bouc-Wen model (Eq. (3)) and the differentiable Bouc-Wen model (Eq. (5)). The simulated results 

indicate that the structural responses of both models are close to each other and the proposed 

differentiable Bouc-Wen model is capable of capturing the hysteretic behaviors of the system with 
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acceptable accuracy. In the discussion afterwards, the proposed differentiable Bouc-Wen model 

will be adopted for parameter identification. 

 

Fig. 3 Structural responses of the SDOF Bouc-Wen hysteretic system 

 

4.1.2 Parameter identification using analytically evaluated partial derivatives 

In this parameter identification example, the values of system parameters and excitation are the 

same as those in Section 4.1.1. The mass 𝑚 is treated as accurate and other parameters are chosen 

for identification. The initial estimates are set as 𝑐0|−1 = 0.15 Ns/m, 𝑘0|−1 = 6 N/m, 𝛽0|−−1 = 0.5, 

𝛾0|−1 = 0.5, and 𝑛0|−1 = 4.  The state-space system equation for parameter identification can be 

formulated as: 

𝐱 =

(

 
 
 
 
 

𝑞
�̇�
𝑧
𝑐
𝑘
𝛽
𝛾
𝑛)

 
 
 
 
 

               �̇� = 𝒇(𝐱, �̈�𝑔) =

(

 
 
 
 
 
 

�̇�

− (�̈�𝑔 + 𝑤) − (𝑐�̇� + 𝑘𝑧) 𝑚⁄

�̇�(1 − (tanh(𝜌𝑧) 𝑧)𝑛(𝛾 + 𝛽 tanh(𝜌𝑧�̇�)))

0
0
0
0
0 )

 
 
 
 
 
 

 (28) 
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The absolute acceleration of the mass is measured at 𝑡 = 𝑘∆𝑡 and the measurement equation is 

given as: 

𝑦𝑘 = −(𝑐�̇�𝑘 + 𝑘𝑧𝑘) 𝑚⁄ + 𝑣𝑘 (29) 

The covariance of the process noise is set as Σ𝑤 = (10
−2  m s2⁄ )2, and the covariance of sensor 

noise is set as Σ𝑣 = (10
−2  m s2⁄ )2.  

Two parameter identification methods are adopted and compared using this SDOF hysteretic 

system. The first method is the standard EKF introduced in Section 3.1. The second method is the 

proposed CEKF introduced in Section 3.2. In the identification process, the linearization of system 

equation 𝒇 and measurement equation 𝒉 uses analytically derived partial derivatives. 

For CEKF, inequality constraints applied on the parameters are listed as follows [32]: 

𝑐 ≥ 0, 𝑘 ≥ 0, 𝛽 + 𝛾 ≥ 0, 𝛽 − 𝛾 ≥ 0, 𝑛 ≥ 1 (30) 

Using the EKF and CEKF methods, the parameters of the nonlinear Bouc-Wen hysteretic system 

are identified together with the original system states, including displacement, velocity, and 

hysteretic displacement. Fig. 4 shows the time histories of the a posteriori estimates of the 

parameters and the system states. Except for the damping parameter 𝑐 and the stiffness parameter 

𝑘, all the other parameters cannot be updated correctly by EKF. On the other hand, the proposed 

CEKF can recursively update all the parameters from their initial values to the corresponding true 

values. The bound constraints can effectively prevent the estimates from being unreasonable 

values. The estimates of stiffness parameter 𝑘 and damping coefficient 𝑐 converge faster than the 

estimates of hysteretic parameters, which remain not updated and change rapidly after about 2 
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seconds. This is because the structure has not exhibited nonlinear behavior within the first 2 

seconds of the estimation process.  

 

Fig. 4 Updating results on the SDOF Bouc-Wen hysteretic model using analytically linearized 

system and measurement equations 

 

Similar to the estimation of parameters, the estimated states and hysteretic loop from the proposed 

CEKF match well with the actual states and hysteretic loop, respectively. On the other hand, EKF 

can provide accurate estimates for velocity �̇� and hysteretic displacement 𝑧, while the estimate of 

displacement 𝑞 suffers slow drift over time during the model updating process, and results in an 

inaccurate hysteretic loop. 

A comparison of the final estimated values using different identification algorithms is summarized 

in Table 2. EKF estimation errors of all the hysteretic parameters are greater than 25%. The 
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difficulty of EKF identifying parameters of highly nonlinear systems has also been reported by 

other researchers [24]. On the other hand, the proposed CEKF is capable of accurately identifying 

model parameter values; all estimation errors are within ±1%. This simulation example shows that 

the proposed CEKF outperforms EKF when applied for parameter identification of highly 

nonlinear systems. 

Table 2 Comparison of estimation results on the SDOF Bouc-Wen hysteretic model using 

analytically evaluated partial derivatives 

Parameters 
Actual 

values 

EKF CEKF 

Values Errors (%) Values Errors (%) 

𝑐 (Ns m⁄ ) 0.3 0.3149 4.9603 0.3007 0.2185 

𝑘 (N m⁄ ) 12 12.4596 3.8297 11.9958 −0.0353 

𝛽 2 0.8424 −57.8792 2.0109 0.5464 

𝛾 1 0.7389 −26.1072 1.0026 0.2634 

𝑛 2 1.2313 −38.4326 2.0080 0.4011 

 

4.1.3 Parameter identification using numerically evaluated partial derivatives 

Although partial derivatives of the modified Bouc-Wen model can be calculated analytically, 

sometimes it is necessary to calculate the partial derivatives using numerical methods, such as 

finite difference method. The two parameter identification methods are repeated using numerically 

evaluated partial derivatives for linearizing system and measurement equations.  

Fig. 5 shows the time histories of the a posteriori estimates of the parameters and the system states. 

The estimation results can be found are almost the same as those using analytically linearized 

system and measurement equations (Fig. 4). The time histories show that it is difficult for EKF to 

accurately identify hysteretic parameters and displacement, while the proposed CEKF can provide 

accurate estimates for both system parameters and system states. 
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Fig. 5 Updating results on the SDOF Bouc-Wen hysteretic model using numerically linearized 

system and measurement equations 

 

Table 3 summarizes the final estimated values of system parameters using different identification 

algorithms. It is shown that the proposed CEKF can provide more accurate estimation results than 

EKF. Comparing to the estimation results in Table 2, the difference between the final estimated 

values using numerically linearized equations and analytically linearized equations is within ±1%. 

In terms of simulation time, it takes 2.36 s using the analytical derivative, while it takes 4.36 s 

using the numerical derivative (about 85% longer time than the analytical approach). Both 

simulations are conducted on a laptop PC with Intel® Core™ i7-8750H (2.20 GHz) and 8 GB 

RAM memory.  
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Table 3 Comparison of estimation results on the SDOF Bouc-Wen hysteretic model using 

numerically evaluated partial derivatives 

Parameters 
Actual 

values 

EKF CEKF 

Values Errors (%) Values Errors (%) 

𝑐 (Ns m⁄ ) 0.3 0.3153 5.1039 0.3007 0.2211 

𝑘 (N m⁄ ) 12 12.4706 3.9213 11.9959 −0.0345 

𝛽 2 0.8291 −58.5466 2.0111 0.5530 

𝛾 1 0.7401 −25.9944 1.0030 0.3021 

𝑛 2 1.2218 −38.9081 2.0081 0.4049 

 

4.1.4 Comparison with unscented Kalman filter (UKF) 

The performance of CEKF on parameter identification is further investigated through comparison 

with unscented Kalman filter (UKF). The same SDOF Bouc-Wen hysteretic model is updated 

using UKF and the final estimated values of system parameters is compared with the results of 

CEKF using analytically evaluated partial derivatives. Table 4 summarizes the comparison results, 

where the largest estimation error by CEKF is 0.5464% (for parameter 𝛽), and the largest error by 

UKF is 0.2177% (for the same parameter 𝛽). It is expected that UKF provides lower estimation 

errors than CEKF, as UKF achieves higher order accuracy with the unscented transformation. At 

the same time, it is found that the CEKF with analytical derivative computes much faster than 

UKF.  On a laptop PC with Intel® Core™ i7-8750H (2.20 GHz) and 8 GB RAM memory, the 

CEKF estimation takes 2.36 s to finish, while the UKF takes 8.05 s, which is about 2.41 times 

longer than CEKF.  

Table 4 Comparison of estimation results on the SDOF Bouc-Wen hysteretic model using UKF 

and CEKF 

Parameters 
Actual 

values 

UKF CEKF 

Values Errors (%) Values Errors (%) 

𝑐 (Ns m⁄ ) 0.3 0.3003 0.1092 0.3007 0.2185 

𝑘 (N m⁄ ) 12 11.9987 −0.0111 11.9958 −0.0353 

𝛽 2 2.0044 0.2177 2.0109 0.5464 

𝛾 1 1.0024 0.2352 1.0026 0.2634 

𝑛 2 2.0034 0.1707 2.0080 0.4011 
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4.2 Numerical simulation – four-story shear structure 

The second validating example is a four-story shear structure, as shown in Fig. 6. In this example, 

each inter-story element consists of viscous damping and hysteresis. The hysteretic force within 

the i-th story is 𝑘𝑖𝑧𝑖, where the hysteretic displacement 𝑧𝑖 is described by the differentiable Bouc-

Wen model. 

�̇�𝑖 = {
�̇�𝑖(1 − (tanh(𝜌𝑧𝑖)𝑧𝑖)

𝑛(𝛾 + 𝛽 tanh(𝜌𝑧𝑖�̇�𝑖))) 𝑖 = 1

(�̇�𝑖 − �̇�𝑖−1) (1 − (tanh(𝜌𝑧𝑖)𝑧𝑖)
𝑛(𝛾 + 𝛽 tanh(𝜌𝑧𝑖(�̇�𝑖 − �̇�𝑖−1)))) 𝑖 = 2,3,4

 (31) 

 

Fig. 6 Four-story shear structure 

The equation of motion for this four-story structure with nonlinear hysteresis can be expressed as: 

𝐌�̈� + 𝐂�̇� + 𝐊𝐳 = −𝐌𝜾(�̈�𝑔 + 𝑤) (32) 
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where 𝐪 ∈ ℝ4 is the displacement vector, 𝐳 ∈ ℝ4 is the hysteretic displacement vector with each 

𝑧𝑖  described by Eq. (31), 𝐌 ∈ ℝ4×4  is the mass matrix, 𝐂 ∈ ℝ4×4  is the damping matrix, 𝜾 =

{𝟏} ∈ ℝ4 is the influence vector, �̈�𝑔 ∈ ℝ is the ground acceleration, 𝑤 ∈ ℝ is the input uncertainty, 

and 𝐊 contains the inter-story stiffness values: 

𝐊 =

(

 

𝑘1 −𝑘2
𝑘2 −𝑘3

𝑘3 −𝑘4
𝑘4 )

  (33) 

The state-space system equation for parameter identification can be formulated as: 

𝐱 =

(

 
 
 
 
 

𝐪
�̇�
𝐳
𝐜
𝐤
𝛽
𝛾
𝑛)

 
 
 
 
 

               �̇� = 𝒇(𝐱, �̈�𝑔, 𝑤) =

(

 
 
 
 
 

�̇�

−𝐌−1(𝐂�̇� + 𝐊𝐳) − 𝜾(�̈�𝑔 + 𝑤)

�̇�
𝟎
𝟎
0
0
0 )

 
 
 
 
 

 (34) 

Here �̇� is determined by Eq. (31). Table 5 lists values of model parameters of the four-story shear 

structure. Except for mass, all the other parameters are identified by EKF and CEKF. 

Table 5 Parameter values 

Parameters Initial value Actual value 

𝑚1 ~ 𝑚4 (kg) 5 5 

𝑐1 (Ns m⁄ ) 5 9 

𝑐2 (Ns m⁄ ) 5 8 

𝑐3 (Ns m⁄ ) 5 7 

𝑐4 (Ns m⁄ ) 5 6 

𝑘1  (kN m⁄ ) 1.5 1.0 

𝑘2  (kN m⁄ ) 1.5 1.2 

𝑘3  (kN m⁄ ) 1.5 1.6 

𝑘4  (kN m⁄ ) 1.5 2.0 

𝛽 0.5 2 

𝛾 0.5 1 

𝑛 4 2 
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The same scaled El Centro earthquake excitation used in Section 4.1 is applied to excite the 

structure. It is assumed that all the four floors are instrumented with sensors measuring acceleration 

at sampling frequency of 200 Hz. At 𝑡 = 𝑘∆𝑡, the absolute accelerations of all floors are measured: 

𝐲𝑘 = −𝐌
−1(𝐂�̇�𝑘 + 𝐊𝐳𝑘) + 𝐯𝑘 (35) 

The covariance of the process noise is set as Σ𝑤 = (10
−2  m s2⁄ )2, and the covariance of sensor 

noise is set as 𝚺𝐯 = (10
−2  m s2⁄ )2𝐈 .   

To identify the model parameters, the standard EKF and the proposed CEKF are conducted. In the 

identification process, the system equation and measurement equation are linearized analytically. 

For CEKF, inequality constraints applied on the parameters are listed as follows: 

𝑐𝑖 ≥ 0, 𝑘𝑖 ≥ 0, 𝛽 + 𝛾 ≥ 0, 𝛽 − 𝛾 ≥ 0, 𝑛 ≥ 1 (36) 

Fig. 7 shows the time histories of the a posteriori estimates of the model parameters. With 

constraints applied during the estimation process, CEKF can recursively update all the parameters 

from their initial values to the corresponding true values. On the other hand, without applying 

constraints, EKF cannot guarantee that the estimates of model parameters, especially the hysteretic 

parameters, converge to their true values. 
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Fig. 7 Updating results using EKF and CEKF on the four-story shear structure 

 

Table 6 shows the comparison of the final estimated values using EKF and CEKF algorithms. 

Similar to the updating results of the SDOF Bouc-Wen hysteretic model, it shows that CEKF can 

accurately identify the model parameters, while EKF performs poorly on damping and hysteretic 

parameters. All CEKF estimation errors are within ±2.5%. EKF estimation errors of hysteretic 

parameters are larger than 90% and the largest estimation error is close to 100% for parameter 𝛾.  

Table 6 Comparison of estimated results using EKF and CEKF on the four-story shear structure 

Parameters Actual values 
EKF CEKF 

Values Errors (%) Values Errors (%) 

𝑐1 (Ns m⁄ ) 9 11.4241 26.9347 8.9564 −0.4850 

𝑐2 (Ns m⁄ ) 8 8.2740 3.4250 7.9921 −0.0983 

𝑐3 (Ns m⁄ ) 7 6.4602 −7.7120 6.9949 −0.0728 

𝑐4 (Ns m⁄ ) 6 5.1075 −14.8746 6.0043 0.0712 

𝑘1  (kN m⁄ ) 1.0 0.9900 −0.9956 1.0000 −0.0040 

𝑘2  (kN m⁄ ) 1.2 1.1851 1.2415 1.2006 0.0479 

𝑘3  (kN m⁄ ) 1.6 1.6050 0.3102 1.6004 0.0219 

𝑘4  (kN m⁄ ) 2.0 1.9925 −0.3742 2.0001 0.0073 

𝛽 2 0.0332 −98.3396 1.9526 −2.3707 

𝛾 1 0.0072 −99.2777 0.9888 −1.1231 

𝑛 2 0.1812 −90.9397 1.9906 −0.4713 
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4.3 Experimental test – four-story shear structure 

To further validate the proposed CEKF algorithm, a four-story laboratory structure is tested (Fig. 

8). The structure is made of aluminum alloy with the total height of 1.182 m. The weight of each 

floor is measured by scale. The structure is mounted on a shake table which provides horizontal 

base excitation. To measure both the response of the structure and the base excitation, an 

accelerometer (Crossbow CXL01LF1) and a displacement sensor are instrumented on each floor 

and the shake table, as illustrated in the figure. During the estimation process, only the acceleration 

data are used. The displacement data are used later to further evaluate the estimation performance. 

The sampling frequency is set as 200 Hz. 

 

Fig. 8 Experimental setup 

 

To excite the structure, a scaled chirp signal from 0 Hz to 10 Hz is generated as ground excitation. 

The measured ground acceleration and displacement are shown in Fig. 9. 
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(a) Ground acceleration (b) Ground displacement 

 

Fig. 9 Ground acceleration and displacement 

 

To identify the model parameters together with the system states, EKF and CEKF are conducted. 

The acceleration data from all the accelerometers are used for parameter identification. The initial 

estimates are set as 𝑐𝑖,0|−1 = 5 Ns/m, 𝑘𝑖,0|−1 = 1.5 kN/m, 𝛽0|−1 = 0.5, 𝛾0|−1 = 0.5, and 𝑛0|−1 =

4. The covariance of the process noise is set as Σ𝑤 = (3.5 × 10−3  m s2⁄ )2, and the covariance of 

sensor noise is set as 𝚺𝐯 = (3.5 × 10−3  m s2⁄ )2𝐈.  For CEKF, the same inequality constraints in 

Eq. (36) are incorporated during the estimation process. 

The time histories of the a posteriori estimates of the model parameters of the four-story shear 

structure using experimental data are plotted in Fig. 10. It is observed that the updating results of 

EKF and CEKF are slightly different. It should be noted that estimates generated from CEKF 

always stay within the feasible domain, while some estimates from EKF fail to satisfy the 

constrains during the identification process. For example, EKF estimate of 𝑐3 become negative at 

around 20 s as shown in the figure.        
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Fig. 10 Updating results using EKF and CEKF on the four-story shear structure using 

experimental data 

Table 7 summarizes the estimated results provided by EKF and CEKF for the four-story shear 

structure using experimental data. Both EKF and CEKF results show that lower stories 

demonstrate much less inter-story stiffness due to significant P-Δ effect of the lab structure. The 

stiffness values estimated by EKF and CEKF values are similar to those obtained from previous 

frequency domain model updating approaches (assuming linear structure) [33, 34]. It should be 

noted that the hysteretic parameters estimated by EKF are not reasonable, as 𝛽 is smaller than 𝛾. 

On the other hand, CEKF ensures the hysteretic parameters remain within realistic bounds. 

Table 7 Estimated results using EKF and CEKF on the four-story shear structure 

Parameters EKF CEKF 

𝑐1 (Ns m⁄ ) 0.0594 0.0635 

𝑐2 (Ns m⁄ ) 0.7010 0.2309 

𝑐3 (Ns m⁄ ) 0.0219 0.3562 

𝑐4 (Ns m⁄ ) 1.1048 0.8935 

𝑘1  (kN m⁄ ) 0.9418 0.9418 

𝑘2  (kN m⁄ ) 1.2932 1.2958 

𝑘3  (kN m⁄ ) 1.4560 1.4612 

𝑘4  (kN m⁄ ) 2.4484 2.4520 

𝛽 0.0032 0.0257 

𝛾 0.0152 0.0163 

𝑛 2.0319 1.2079 
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To investigate the performance of parameter identification algorithms, structural responses are 

simulated using the initial parameter values and the updated parameter values from EKF and 

CEKF. Fig. 11 plots the acceleration responses of the shear structure simulated using initial, EKF, 

and CEKF updated model parameters. Acceleration responses of entire time span from 0 s to 50 s 

are plotted in Fig. 11(a). The close-up plots of 5 s to 8 s are shown in Fig. 11(b). Both EKF and 

CEKF updated parameters can provide acceleration responses close to measurement data, while 

initial model parameters cannot generate accurate acceleration response at the beginning. The 

close-up plots of 30 s to 33 s are shown in Fig. 11(c). It can be observed that acceleration responses 

provided by all the model parameters are similar to each other and close to the measurement data 

as time increases. 

 

Fig. 11 Simulated acceleration responses of the shear structure 
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Fig. 12 plots the displacement responses of the shear structure simulated using initial, EKF, and 

CEKF updated model parameters. Displacement responses of entire time span from 0 s to 50 s are 

plotted in Fig. 12(a). The close-up plots of 5 s to 8 s are shown in Fig. 12(b). The simulation results 

show that both EKF and CEKF updated parameters provide similar displacement responses at the 

beginning. Comparing to the displacement responses generated from initial model parameters, the 

EKF and CEKF responses are much closer to the measurement data. The close-up plots of 30 s to 

33 s are shown in Fig. 12(c). It can be seen from the figure that CEKF updated parameters performs 

consistently well over time. On the other hand, the displacements of EKF updated parameters show 

obvious oscillation and differ from the measurement data. In addition, initial parameters can 

generate relatively accurate displacement responses in the later part of simulation. 

 

Fig. 12 Simulated displacement responses of the shear structure 
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The root mean square (RMS) errors between the simulated responses and all experimental 

measurements are summarized in Table 8. Both the EKF and CEKF updated parameter values can 

reduce the simulation error in terms of acceleration response. CEKF performs better than EKF. In 

addition, the reliable parameter values updated using CEKF achieve less simulation error for the 

displacement responses. On the other hand, the displacement responses calculated using EKF 

parameter values have larger RMS errors than those simulated using initial parameters.  

Table 8 Simulated responses RMS error comparison using full measurements 

RMS error Initial EKF CEKF 

�̈�1 (×10-2 m s2⁄ ) 10.7044 7.4750 3.5921 

�̈�2 (×10-2 m s2⁄ ) 12.0739 5.7188 4.3160 

�̈�3 (×10-2 m s2⁄ ) 6.9700 4.8263 3.8885 

�̈�4 (×10-2 m s2⁄ ) 7.1973 5.8907 3.4961 

𝑞1  (×10-4 m) 3.0880 4.9317 2.3347 

𝑞2  (×10-4 m) 4.6322 6.6412 3.1165 

𝑞3  (×10-4 m) 5.5168 7.9809 3.6720 

𝑞4  (×10-4 m) 5.9176 8.7002 4.0522 

 

To further investigate the performance of CEKF, parameters of the four-story laboratory structure 

are updated using partial measurement data from accelerometers #3 and #4 only (Fig. 8). Using 

the updated parameters, structural responses are again simulated and compared with the measured 

responses. Table 9 summarizes the RMS errors between the simulated responses and all 

experimental measurements. The results demonstrate that overall CEKF performs better than EKF. 

Comparing to the RMS errors shown in Table 8, simulation using the EKF-updated parameters 

happens to provide fairly accurate acceleration responses, but the displacement responses have 

large errors from the experimental measurements. Without incorporating constraints, EKF 

achieves accurate acceleration responses at the expense that some updated parameters violate 

reasonable constraints. These unreliable parameters result in the large errors of displacement 



33 

 

responses. On the other hand, CEKF performance is consistent in all simulated responses. 

Compared with previous simulation using CEKF estimates from full measurements (in Table 8), 

the RMS errors of �̈�1 , �̈�2 , and �̈�4  increase slightly while the RMS errors of other responses 

decrease. 

Table 9 Simulated responses RMS error comparison using partial measurements (accelerometers 

#3 and #4 only) 

RMS error Initial EKF CEKF 

�̈�1 (×10-2 m s2⁄ ) 10.7044 3.4186 4.0514 

�̈�2 (×10-2 m s2⁄ ) 12.0739 3.6888 4.6096 

�̈�3 (×10-2 m s2⁄ ) 6.9700 4.5028 3.0547 

�̈�4 (×10-2 m s2⁄ ) 7.1973 4.3323 3.6840 

𝑞1  (×10-4 m) 3.0880 6.0123 2.2866 

𝑞2  (×10-4 m) 4.6322 9.7278 3.0068 

𝑞3  (×10-4 m) 5.5168 12.1781 3.4511 

𝑞4  (×10-4 m) 5.9176 12.9802 3.8775 

 

5 Summary and Future Work 

This paper investigates nonlinear parameter identification of hysteretic systems using the 

constrained extended Kalman filter (CEKF). A differentiable Bouc-Wen model is proposed for 

capturing the hysteretic characteristics of the structural system. This differentiable Bouc-Wen 

model enables parameter identification using EKF and CEKF which require to linearize system 

equation to propagate state estimate and covariance. Numerical simulation and experimental test 

have shown that EKF can easily result in unreliable estimates of model parameters due to large 

linearization error for the highly nonlinear system. Comparing to EKF, the proposed CEKF can 

effectively prevent the estimates of model parameters from being unrealistic and finally provide 

reasonable estimates by applying constraints on parameters during the estimation process.  



34 

 

While CEKF has demonstrated more reliable performance than EKF in parameter identification, 

comprehensive comparison between CEKF and other algorithms, such as UKF and particle filter, 

can be conducted to further identify their pros and cons. In addition, future research will be needed 

to investigate the CEKF performance using partial measurements on larger structures, which 

presents more challenging conditions for the estimator.   
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Appendix 

1. Matrix differentiation 

Suppose that 𝐀 ∈ ℝ𝑚×𝑛 is a matrix and 𝑓(𝐀) is a scalar function. The partial derivative of a scalar 

function with respect to a matrix is defined as: 

𝜕𝑓

𝜕𝐀
=

(

 
 
 
 
 

𝜕𝑓

𝜕𝐴11

𝜕𝑓

𝜕𝐴12
⋯

𝜕𝑓

𝜕𝐴1𝑛
𝜕𝑓

𝜕𝐴21

𝜕𝑓

𝜕𝐴22
⋯

𝜕𝑓

𝜕𝐴2𝑛
⋮ ⋮ ⋱ ⋮
𝜕𝑓

𝜕𝐴𝑚1

𝜕𝑓

𝜕𝐴𝑚2
⋯

𝜕𝑓

𝜕𝐴𝑚𝑛)

 
 
 
 
 

 (A.1) 

Consider matrices 𝐀 ∈ ℝ𝑚×𝑛  and 𝐁 ∈ ℝ𝑛×𝑛, and a scalar function 𝑓(𝐀) = Trace(𝐀𝐁𝐀T). The 

partial derivative of 𝑓(𝐀) with respect to 𝐀 is found as [30]: 

𝜕𝑓

𝜕𝐀
= 𝐀𝐁T + 𝐀𝐁 (A.2) 

If 𝐁 = 𝐁T, the partial derivative is simplified as: 

𝜕𝑓

𝜕𝐀
= 2𝐀𝐁 (A.3) 

Consider matrix 𝐀 ∈ ℝ𝑚×𝑛 , vectors 𝐱 ∈ ℝ𝑚  and 𝐲 ∈ ℝ𝑛 , and a scalar function 𝑓(𝐀) = 𝐱T𝐀𝐲. 

The scalar function 𝑓(𝐀) can be expanded as: 

𝑓(𝐀) = 𝐱T𝐀𝐲 = (𝑥1 𝑥2 ⋯ 𝑥𝑚) (

𝐴11 𝐴12 ⋯ 𝐴1𝑛
𝐴21 𝐴22 ⋯ 𝐴2𝑛
⋮ ⋮ ⋱ ⋮
𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑛

)(

𝑦1
𝑦2
⋮
𝑦𝑛

) =∑ 𝑥𝑖𝐴𝑖𝑗𝑦𝑗
𝑖,𝑗

 (A.4) 
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The partial derivative of 𝑓(𝐀) with respect to 𝐀 is then calculated as: 

𝜕𝑓

𝜕𝐀
= (

𝑥1𝑦1 𝑥1𝑦2 ⋯ 𝑥1𝑦𝑛
𝑥2𝑦1 𝑥2𝑦2 ⋯ 𝑥2𝑦𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚𝑦1 𝑥𝑚𝑦2 ⋯ 𝑥𝑚𝑦𝑛

) = 𝐱𝐲T (A.5) 

2. Derivation of Kalman gain for CEKF 

Consider the equality constrained optimization problem: 

minimize
𝐋

 Trace ((𝐈 − 𝐋𝑘𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝑘𝐇𝑘

𝐱)T + 𝐋𝑘𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋𝑘
T)

subject to  𝐀a (�̂�𝑘|𝑘−1 + 𝐋(𝐲𝑘 − �̂�𝑘|𝑘−1)) − 𝐛a = 𝟎
 (A.6) 

For brevity, denote the measurement innovation 𝐫𝑘  and innovation covariance 𝚺𝐲𝑘  at time  𝑡 =

𝑘∆𝑡 as: 

𝐫𝑘 = 𝐲𝑘 − �̂�𝑘|𝑘−1 (A.7) 

𝚺𝐲𝑘 = 𝐇𝑘
𝐱𝚺𝐱𝑘|𝑘−1(𝐇𝑘

𝐱)T + 𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T (A.8) 

Using Lagrange multiplier 𝛎 ∈ ℝ𝑛𝑎𝑐 , the Lagrangian for the problem is: 

ℒ(𝐋, 𝛎) = Trace ((𝐈 − 𝐋𝑘𝐇𝑘
𝐱)𝚺𝐱𝑘|𝑘−1(𝐈 − 𝐋𝑘𝐇𝑘

𝐱)T + 𝐋𝑘𝐇𝑘
𝐯𝚺𝐯(𝐇𝑘

𝐯)T𝐋𝑘
T) 

(A.9) 

 +𝛎T(𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a) 

Note that 𝚺𝐱𝑘|𝑘−1 = 𝚺𝐱𝑘|𝑘−1
T  and 𝐇𝑘

𝐯𝚺𝐯(𝐇𝑘
𝐯)T = (𝐇𝑘

𝐯𝚺𝐯(𝐇𝑘
𝐯)T)T. Based on Eq. (A.3) and Eq. (A.5), 

the partial derivatives of ℒ(𝐋, 𝛎) with respect to 𝐋 and 𝛎, respectively, are: 
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𝜕

𝜕𝐋
ℒ(𝐋, 𝛎) = −2(𝐈 − 𝐋𝐇𝑘

𝐱)𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T + 2𝐋𝐇𝑘

𝐯𝚺𝐯(𝐇𝑘
𝐯)T + 𝐀a

T𝛎𝐫𝑘
T (A.10) 

𝜕

𝜕𝛎
ℒ(𝐋, 𝛎) = 𝐀a(�̂�𝑘|𝑘−1 + 𝐋𝐫𝑘) − 𝐛a (A.11) 

The optimality requires that both partial derivatives are zero. Assume 𝐀a ∈ ℝ
𝑛ac×𝑛𝐱  is a full row-

rank matrix with rank(𝐀a) = 𝑛ac ≤ 𝑛𝐱. We can express the Kalman gain 𝐋 as a function of the 

Lagrange multiplier 𝛎. First, the partial derivative 
𝜕

𝜕𝐋
ℒ(𝐋, 𝛎) in Eq. (A.10) is set as zero. Solving 

the equation 
𝜕

𝜕𝐋
ℒ(𝐋, 𝛎) = 𝟎 for 𝐋 provides: 

𝐋 = 𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T𝚺𝐲𝑘

−1 −
1

2
𝐀a
T𝛎𝐫𝑘

T𝚺𝐲𝑘
−1 (A.12) 

Substituting Kalman gain expression Eq. (A.12) into the partial derivative Eq. (A.11) and solving 

the equation 
𝜕

𝜕𝛎
ℒ(𝐋, 𝛎) = 𝟎 for 𝛎 provides: 

𝛎 = 2(𝐀a𝐀a
T)−1 (𝐀a (�̂�𝑘|𝑘−1 + 𝚺𝐱𝑘|𝑘−1(𝐇𝑘

𝐱)T𝚺𝐲𝑘
−1𝐫𝑘) − 𝐛a) (𝐫𝑘

T𝚺𝐲𝑘
−1𝐫𝑘)

−1
 (A.13) 

Denote the regular Kalman gain and the a posterior state estimate of the unconstrained EKF as: 

�̃�𝑘 = 𝚺𝐱𝑘|𝑘−1(𝐇𝑘
𝐱)T𝚺𝐲𝑘

−1 (A.14) 

�̃�𝑘|𝑘 = �̂�𝑘|𝑘−1 + �̃�𝑘𝐫𝑘 (A.15) 

The Lagrange multiplier 𝛎 in Eq. (A.13) is simplified as: 

𝛎 = 2(𝐀a𝐀a
T)−1(𝐀a�̃�𝑘|𝑘 − 𝐛a)(𝐫𝑘

T𝚺𝐲𝑘
−1𝐫𝑘)

−1
 (A.16) 



40 

 

Finally, substituting the simplified 𝛎 into Eq. (A.12), the Kalman gain of CEKF can be rewritten 

as: 

𝐋𝑘 = �̃�𝑘 − 𝐀a
T(𝐀a𝐀a

T)−1(𝐀a�̃�𝑘|𝑘−1 − 𝐛a)(𝐫𝑘
T𝚺𝐲𝑘

−1𝐫𝑘)
−1
𝐫𝑘
T𝚺𝐲𝑘

−1 (A.17) 

 


