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Abstract 
In order to reduce the discrepancy between an as-built structure and its preliminary finite element 
(FE) model, selected FE model parameters can be updated based on the experimental data collected 
from the actual structure. This process is termed as FE model updating. During the past few 
decades, many FE model updating approaches have been developed. Most of the approaches 
operate on the entire stucture model, attempting to simultaneously update parameters at difference 
parts of the structure. When applied to large and complex structures, such approaches suffer 
computational challenges and convergence issues. To overcome these difficulties, this paper adopts 
a substructure model updating approach that utilizes the Craig-Bampton transform to reduce model 
size. Furthermore, this paper also studies the robustness of the substructure model updating 
approach with noisy measurements that may negatively influence the model updating accuracy. A 
regularized modal dynamic residual approach is proposed for the substructure model updating with 
noisy measurments. To evaluate the performance of the substructure model updating approach, 
Monte Carlo simulation is performed to generate noise-contaminated modal properties of a 200-
degree-of-freedom spring mass model. The updating performance is compared with a conventional 
updating procedure that minimizes analytical and experimental modal property differences.  

1. Introduction 
Over the past few decades, tremendous progress has been made in finite element (FE) modeling of 
civil structures. Nevertheless, discrepancies usually exist in structural behavior between the 
prediction from FE models (built according to design drawings) and actual structures in the field. 
For example, nominal material properties are usually adopted in FE models, while actual material 
properties can be different. In another example, idealized connections and support conditions are 
typically used in structural analysis and design, while these conditions do not exist in reality. As a 
result, a preliminary FE model may not accurately describe the behavior of the actual structure. To 
achieve higher accuracy, FE model updating can be performed based on sensor measurements from 
the actual structure in the field.  
Numerous FE model updating methods have been developed in the past few years (Friswell & 
Mottershead, 1995). The discrepancies between experimental measurement and FE model can be 
adopted as the minimization objective for FE model updating. Such discrepancy objective can be 
based on time histories (Hoshiya & Saito, 1984), vibration modes (Jaishi & Ren, 2006), frequency 
response function (Sipple & Sanayei, 2014), among others. However, most of the existing methods 
operate on the entire structure model, attempting to simultaneously update parameters at difference 
parts of the structure. Thus, the methods usually suffer computational challenges and convergence 
problem when applied on complex structures with a large number of degrees of freedom (DOFs). In 
order to address the difficulties, some research activities have been devoted to substructure model 
updating, which focuses on updating one part of a large structure (instead of the entire structure) at 
a time. For instance, operating in time domain, the extended Kalman filter is applied for 
substructure model updating of a shear-frame structure (Koh et al., 1991). In other studies, 
frequency spectra are adopted for substructure identification, by minimizing the difference between 
simulated and experimental acceleration spectra in certain frequency band (Zhang & Johnson, 



 

 

2013). In addition, Zhu et al. (2014) adopt the Craig-Bampton transform to condense the rest of the 
structure, and update a substructure by minimizing the modal dynamic residuals from the 
eigenvalue equations in structural dynamics.  
Besides the challenge caused by the scale of large structure models, experimental data is inevitably 
contaminated with random and systematic measurement noises. The noisy data produces 
uncertainties in model updating results, which negatively influence FE model updating accuracy. 
Researchers have investigated noise effect reduction for some FE model updating approaches. For 
example, some researchers adopted Bayesian estimation in model updating to reduce the influence 
of measurement noises (Alvin, 1997; Collins et al., 1974). In addition, Ahmadian et al. (1998) 
investigated the regularization of model parameter change in the objective function for FE model 
updating using noisy measurements. The application of truncated singular value decomposition 
(SVD) approach is also studied by Park et al. (2007).  
This research studies substructure model updating using noise-contaminated vibration modal 
properties. Following the approach proposed by Zhu et al. (2014), the residual structure is 
condensed through the Craig-Bampton transform. A regularized modal dynamic residual approach 
is proposed as the optimization problem for model updating. An iterative linearization procedure is 
adopted for efficiently solving the optimization problem (Farhat & Hemez, 1993). To evaluate the 
reliability of the substructure model updating approach, Monte Carlo simulation is performed to 
generate noise-contaminated modal properties of a 200-DOF spring mass model. The rest of the 
paper is organized as follows. Section 2 presented the formulation of substructure modeling and 
model updating through the regularized modal dynamic residual approach. Section 3 described 
Monte Carlo simulation on a 200-DOF spring-mass model. The performance of the proposed model 
updating approach is compared with a conventional updating procedure that minimizes 
experimental and simulated modal property differences. Finally, Section 4 provides a summary and 
discussion. 
2. Formulation for Substrucutre Modeling and Updating  
This section presents the basic formulation for substructure updating. Section 2.1 describes 
substructure modeling strategy following the Craig-Bampton transform. Section 2.2 describes 
substructure model updating through the regularized modal dynamic residual approach.  

2.1. Substructure Modeling 
Figure 1 illustrates the substructure modeling strategy. The substructure being analyzed, the 
interface nodes, and the residual structure are denoted by subscripts S, I, and R, respectively. The 
block tri-diagonal structural stiffness and mass matrices, K and M, can be assembled using original 
degrees of freedom (DOFs): x = [xS  xI  xR]T.  

SS SI
S S R

IS II II IR
R

RI RR

    
 

       

        
        = + = +                               

0 0 00 0 0 K K0 0
K

K K K0 0 0 0 K K
K

0 0 K K0 0 0 0 0 0

 (1) 

SS SI
S S R

IS II II IR
R

RI RR

    
 

       

        
        = + = +                               

0 0 00 0 0 M M0 0
M

M M M0 0 0 0 M M
M

0 0 M M0 0 0 0 0 0

 (2) 

Here KS and MS are the stiffness and mass matrices corresponding to the substructure; KR and 
MR denote the residual structure entries; KII

S  and MII
S  denote the entries at the interface DOFs 



 

 

and contributed by the substructure; KII
R and MII

R  denote entries at the interface DOFs and 
contributed by the residual structure. 

The dynamic behavior of the residual structure can be approximated using the Craig-Bampton 
transform (Craig & Bampton, 1968). The DOFs of the residual structure,  xR ∈ ℝnR , are 
approximated by a linear combination of interface DOFs, xI ∈ ℝnI , and modal coordinates of the 
residual structure, qR ∈ ℝ

nq. 
R I R R≈ +x Tx Φ q  (3) 

Here T = �−KRR
-1 KRI� ∈ ℝnR×nI, is the Guyan static condensation matrix; ΦR= �ϕ1,⋯, ϕnq

� ∈ ℝnR×nq 
represents the mode shapes of the residual structure with interface DOFs fixed. Although the size of 
the residual structure may be large, the number of modal coordinates, nq, can be selected as 
relatively small to only reflect the first few dominant mode (i.e. nq << nR). The coordinate 
transformation can be written in vector form as: 

I I

R R

   
≈   

   

x x
Γ

x q
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I
Γ

T Φ
 (4) 

The transformation effectively condenses matrices of the residual structure, from KR and MR ∈
ℝ(nI+nR)×(nI+nR) to K�R and M�R ∈ ℝ�nI+nq�×�nI+nq�, respectively (Zhu et al., 2014). Link (1998) 
described a model updating method for both the substructure and the residual structure. The 
substructure model is updated as: 
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where KS0 and MS0 are the stiffness and mass matrices of the substructure and used as initial 
starting point in the model updating; αj and βj correspond to physical system parameters to be 
updated, such as elastic modulus and density of each substructure element; nα and nβ represent the 
total number of corresponding parameters to be updated; KS0,j and MS0,j are constant matrices 
determined by the type and location of these parameters. Subscript “0” will be used hereinafter to 
denote variables associated with the initial structural model, which serves as the starting point for 
model updating. Similarly, the residual structure model is updated as: 

Substructure DOFs xS

Residual DOFs xR

Interface DOFs xI

Substructure

 
Figure 1. Illustration of substructure modeling strategy 
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where ζj and ηj are the modal parameters to be updated; K�R0 and M�R0 are the initial stiffness and 
mass matrices of the condensed residual structure model. Detailed formulations can be found in Zhu 
et al. (2014). K�R0, j and M�R0, j represent the constant correction matrices formulated using modal 
back-transform.  

Using matrix formulations in Eq. (5) for substructure and Eq. (6) for residual structure, the 
condensed structural model with reduced DOFs, [xS  xI  qR]T, can be updated with variables αj, βj, 
ζj and ηj. For brevity, these variables will be referred to in vector form as α ∈ ℝnα, β ∈ ℝnβ, ζ ∈
ℝnI+nq  and η ∈ ℝnI+nq. For example, the condensed stiffness matrix for the entire structure can be 
written as: 
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Similarly, the condensed mass matrix for the entire structure is written as: 
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where Sα,j, Sβ,j , Sζ,j and Sη,j represent the constant sensitivity matrices corresponding to variables αj,  
βj, ζj and ηj, respectively.  

2.2. Substructure model updating through the regularized modal dynamic residual approach 
To update the substructure model, a regularized modal dynamic residual approach is presented in 
this study. The model updating approach aims to minimize the summation of modal dynamic 
residual of the generalized eigenvalue equation and a regularization term. 
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where ‖∙‖  denotes any norm function; nmeas denotes the number of measured modes from 
experiments; ωj denotes the j-th modal frequency extracted from experimental data; ψmeas, j denotes 
the entries in the j-th mode shape that correspond to measured (instrumented) DOFs; ψunmeas, j 
corresponds to unmeasured DOFs; α, β, ζ and η are the selected parameters to be updated (see Eq. 
(7) and (9)); λ is the regularization parameter, which balances the weightings between modal 
dynamic residuals and parameter changes from the initial FE model. The regularized objective 
helps to limit erratic changes in the system updating parameters, particularly when measurement 
noise is present (Ahmadian et al., 1998). Although the selection of regularization parameter λ 
deserves in-depth study, in this preliminary research, a constant regularization parameter is adopted.  

In summary, the optimization variables are system parameters α, β, ζ, η and mode shape entries 
corresponding to unmeasured DOFs, ψunmeas, j. Eq. (10) leads to a complex nonlinear optimization 
problem that is generally difficult to solve. However, an iterative linearization procedure for 
efficiently solving the optimization problem is adopted in this study, similar to (Farhat & Hemez, 
1993). Figure 2 shows the pseudo code of the procedure. Each iteration step involves two 
operations, modal expansion and parameter updating. The operation (i) is modal expansion for 
unmeasured DOFs, where system parameters (α, β, ζ and η) are treated as constant. When model 
parameters are held constant, ψunmeas, j (j=1,…, nmeas) become the optimization variables in Eq. (10). The 
operation (ii) at each iteration is the updating of system parameters (α, β, ζ and η) using the 
expanded mode shapes. Thus, ψunmeas, j (j=1,…, nmeas) is held as constant in operation (ii); the system 
parameters are optimization variables. When 2-norm is used in Eq. (10), the optimization problem 
in both operations becomes a simple regularized least square problem.   

3. Numerical Example 
To validate the regularized modal dynamic residual approach for substructure model updating with 
noisy measurement, simulation is performed on a generic 200-DOF spring-mass model. For the 
initial model, all the mass and spring stiffness values are set identically as 6 kg and 35kN/m, 
respectively. 20%, 30%, 40% of spring stiffness increase is introduced to k45, k48, k50, respectively, 
and 10% of spring stiffness decrease is introduced to k5, k10, k12, k60, k80, k120, k150. Figure 3 shows a 
conceptual drawing of the 200-DOF spring-mass numerical model with marked spring stiffness 
change, as well as substructure, interface and residual DOFs. A substructure including DOFs from 
41 to 54 is selected for model updating. DOFs 40 and 55 are the interface DOFs, and all other DOFs 
belong to the residual structure. Dynamic response of the residual structure is approximated using 
20 modal coordinates, i.e. nq = 20 in Eq. (3). With the substructure DOF vector, xS ∈ ℝ14×1 and the 

start with α, β, ζ and η = 0 (meaning M and K start with initial values at M0 and K0 ) ; 

REPEAT { 

 (i) hold α, β, ζ and η as constant and minimize Eq.(10) over variable unmeas, jψ (j = 1,…,nmeas); 

 (ii) hold unmeas, jψ  ( j = 1,…,nmeas) as constant and minimize Eq.(10) over variables α, β, ζ and η ; 

} UNTIL convergence ; 

Figure 2. Pseudo code of the iterative linearization procedure. 

 



 

 

interface DOF vector, xI ∈ ℝ2×1, the entire structural model is condensed to 36 DOFs (from 200 
DOFs in the original structure). Note that three springs with increased stiffness, k45, k48, and k50, are 
contained in the substructure. Without loss of generality, accurate structural mass matrix is assumed 
to be known, therefore, mass parameters β (Eq. (10)) are not among the updating parameters. 
Assuming acceleration measurements are available only on the substructure and interface DOFs, the 
objective is to identify the actual spring stiffness in the substructure. Table 1 lists the actual stiffness 
values for substructure elements and initial stiffness values for substructure model updating. 
For simplicity, the natural frequencies and mode shapes are directly obtained from solving the 
generalized eigenvalue equation, and used as "experimental" results for model updating. Random 
errors in normal distribution are assigned to every natural frequency and mode shape vector. 

meas, 1, ,= + =
j j j j nψ ψ ς  (11) 

( ) meas1 , 1, ,ω ω ξ= ⋅ + =
j j j j n  (12) 

where ψj denotes the normalized j-th mode shape with maximum entry magnitude equal to 1; ςj 
denotes a zero-mean Gaussian random vector; ξj denotes the relative random error in normal 
distribution (zero mean) for the j-th frequency. In this study, a standard deviation of 0.01 is assigned 
to all entries of ςj and ξj. Note that ςj and ξj are independent.  

For comparison, substructure model updating is also performed using a conventional model 
updating approach. The conventional model updating formulation aims to minimize the difference 
between experimental and simulated natural frequencies, mode shapes, as well as the unit load 
surface of the substructure.   
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Figure 3. Illustration of damage locations and substructure selection 
 

Table 1. Actual and initial stiffness values for substructure elements (104 N/m)  
Spring 

stiffness k41 k42 k43 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 

Actual 
value 3.50 3.50 3.50 3.50 3.50 4.20 3.50 3.50 4.55 3.50 4.90 3.50 3.50 3.50 3.50 3.50 

Initial 
value 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 

 
 

 

 



 

 

Here w1 and w2 are constant weighting factors; FEω j andω j represent the j-th simulated (from the 
condensed model in Eq. (7) and (9)) and experimentally extracted frequencies, respectively; MACj 
represents the modal assurance criterion evaluating the difference between the j-th simulated and 
experimental mode shapes. Note that mode shape entries only corresponding to measured DOFs are 
compared (i.e. between FE

meas, jψ  and meas, jψ ); N is total number of DOFs in the condensed system, 
which equals nS+nI+nq= 36 in this example; uj

FE and uj represent the j-th entry of analytical and 
experimental unit load surface (Jaishi & Ren, 2005). The unit load surface vector, u ∈ ℝN, can be 
calculated from the modal flexibility matrix F ∈ ℝN×N  as: 

= ⋅u F l  (14a) 
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where l ∈ ℝN is a unit load vector with all entries equal to one. Note that when calculating 
experimental modal flexibility matrix, operation (i)-modal expansion introduced in the modal 
dynamic residual approach is performed to obtain complete mode shapes. A nonlinear least-square 
optimization solver, ‘lsqnonlin’ in MATLAB toolbox (MathWorks Inc., 2005), is adopted to 
numerically solve the optimization problem minimizing modal property difference.  

Monte Carlo simulation is performed for J = 10,000 runs to generate J sets of “noisy” modal 
properties. The noisy modal properties are used as experimental data input for model updating. For 
consistency in comparing the two model updating approaches, at the beginning of each group of 
10,000 simulations, the random seed in MATLAB is fixed to generate the same J sets of noisy 
modal properties for both approaches. The root mean square (RMS) of the relative difference 
between updated and actual parameters is calculated to evaluate the updating performance for each 
parameter. 
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where actαi denotes the actual value of the i-th updating parameter (Table 1), and upd
,αi j represents 

the updated optimal value of the i-th parameter in the j-th run. In this numerical study, the updating 
parameters αi  simply refer to stiffness parameters ki. 

For reference, both model updating approaches are first applied when no noise is added to 
experimental modal properties. The initial guesses of the stiffness parameters are all assigned to be 
3.5×104 N/m, different from actual values (Table 1). Because no noise is present, the regularization 
parameter λ in Eq. (10) is set to zero; In order to balance the weighing between the difference of 
natural frequencies and mode shapes, and the difference of unit load surface, weighting factors w1 
and w2 in Eq. (13) are set to 10 and 1, respectively. For each model updating approach, the updating 
is performed assuming different numbers of measured modes are available (i.e. modes 
corresponding to the 2, 3, 4 or 6 lowest natural frequencies). The simulation results show that both 



 

 

model updating approaches can almost achieve ideal solutions in all scenarios when the data is 
noise-free. The average RMS error of updating parameters is at the order of 10-4. 

Using noisy modal properties generated from Monte Carlo simulation, both model updating 
approaches are again performed. Regularization parameter λ in Eq. (10) is set to 10,000. With noisy 
measurement, the modal flexibility component in the modal property difference approach (Eq. (13)) 
is found to degrade the model updating results, so w1 and w2 in Eq. (13) are set to 1 and 0, 
respectively. Table 2 summarizes the RMS error of each updated stiffness parameter inside the 
substructure, as well as the average RMS error of each row for the modal dynamic residual 
approach. As expected, updating results improve as the number of measured modes increases. 
When the number of available modes increases from 2 to 6, the average error decreases 
monotonically from 5.12% to 2.43% for the modal dynamic residual approach. Figure 4 shows the 
histograms of selected updated results (k42, k45, k48 and k50) through the modal dynamic residual 
approach, when different numbers of modes are available. The actual values of the updating 
parameters (i.e., ideal solution) are represented using vertical lines in each plot. When the number 
of available modes increases, the variance of the updated parameter decreases, and the bias from 
actual values also reduces, particularly for k42.  

Table 2. RMS error (%) of model updating results using the regularized modal dynamic 
residual approach 

# of 
modes k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 

Avg. 
error 

2 12.6 8.62 5.66 4.29 2.91 3.42 3.00 2.52 3.36 2.12 3.27 4.75 5.81 6.22 8.18 5.12 
3 9.61 7.24 5.04 4.01 2.70 3.33 2.88 2.33 3.24 2.03 3.01 3.83 4.36 4.37 4.40 4.16 
4 7.61 6.09 4.46 3.72 2.55 3.19 2.75 2.16 3.05 1.98 2.85 3.20 3.39 3.28 3.24 3.57 
6 2.80 2.64 2.64 2.80 2.08 2.40 2.03 1.57 3.03 1.74 2.28 2.55 2.64 2.66 2.60 2.43 

 

 

 

 

  

Figure 4.  Histogram of selected parameters using the regularized modal dynamic 
residual approach 
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Similarly, Table 3 shows the model updating results from the modal property difference approach 
when 2, 3, 4 and 6 modes are available. It can be seen that in all scenarios, large error happens at 
DOFs where stiffness change is introduced (k45, k48 and k50), and the largest errors are always with 
k50 where the greatest stiffness change is introduced. In the meantime, the average error of the 
modal dynamic residual approach is lower than that of the modal property difference approach for 
all scenarios. Figure 5 shows the histogram of selected updated results (k42, k45, k48 and k50) through 
the modal property difference approach when 2, 3, 4 and 6 modes are available. The updated 
parameters are mainly concentrated at zero, meaning the optimization solver likely stopped at a 
local minimum near the initial point. It can be demonstrated that in this example, although both 
modal dynamic residual approach and modal property difference approach can achieve excellent 
results in noise-free case, the modal dynamic residual approach performs better than modal property 
difference approach when measurement is contaminated with noise.    

4. Conclusion  
This research investigates the robustness of a regularized modal dynamic residual approach for 
substructure model updating against measurement noise. The entire structural model is divided into 
the substructure (currently being analyzed) and the residual structure. The Craig-Bampton 
transform is adopted to condense the residual structure. The proposed approach adopted the modal 
dynamic residual with regularization on model parameters as objective function to update the 

Table 3. RMS error (%) of model updating results by modal property difference approach 
# of 

modes k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 
Avg. 
error 

2 15.6 15.1 14.5 14.3 18.4 14.2 14.0 20.7 14.3 25.5 13.4 13.9 14.2 14.7 14.9 15.6 
3 3.68 3.98 4.91 6.30 11.2 8.50 9.29 15.8 9.99 21.9 8.62 7.32 6.00 4.77 3.55 8.28 
4 1.62 2.18 2.23 1.84 16.2 2.08 2.72 20.6 4.08 26.0 2.74 2.20 2.58 2.84 2.57 6.16 
6 2.40 2.14 2.00 2.32 15.4 3.69 4.54 20.3 6.02 25.9 4.26 3.14 2.75 2.44 1.90 6.61 

 

 

  

  
Figure 5.  Histogram of selected parameters by modal property difference approach 
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substructure model. An iterative linearization procedure is adopted for efficiently solving the model 
updating problem.  

The presented substructure updating approach is validated on a 200-DOF spring mass model. For 
comparison, a conventional modal property difference approach is also studied. In the noise-free 
case, the error from the modal dynamic residual approach and the modal property difference 
approach is close to zero. Monte Carlo simulation is then conducted to generate experimental modal 
properties contaminated with noise, and the updating results from the modal dynamic residual 
approach are overall better than those from the modal property difference approach. In the future, 
further analytical and numerical studies are needed on the convergence, accuracy, and 
computational efficiency of the modal dynamic residual approach for substructure model updating 
under noisy measurements. 
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