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ABSTRACT  

To improve the simulation accuracy of the finite-element (FE) model of an as-built structure, measurement data from the 

actual structure can be utilized for updating the model parameters, which is termed as FE model updating. During the past 

few decades, most efforts on FE model updating intend to update the entire structure model altogether, while using 

measurement data from sensors installed throughout the structure. When applied on large and complex structural models, 

the typical model updating approaches may fail due to computational challenges and convergence issues. In order to reduce 

the computational difficulty, this paper studies a decentralized FE model updating approach that intends to update one 

substructure at a time.  The approach divides the entire structure into a substructure (currently being instrumented and 

updated) and the residual structure. The Craig-Bampton transform is adopted to condense the overall structural model.  

The optimization objective is formulated to minimize the modal dynamic residuals from the eigenvalue equations in 

structural dynamics involving natural frequencies and mode shapes.  This paper investigates the effects of different 

substructure locations and sizes on updating performance.  A space frame example, which is based on an actual pedestrian 

bridge on Georgia Tech campus, is used to study the substructure location and size effects. 
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1. INTRODUCTION  

In order to simulate structural behavior under various operational loading conditions, finite element (FE) models are often 

constructed. Over the past few decades, significant progress has been made in FE modeling of civil structures. 

Nevertheless, discrepancies usually exist in structural behavior between the prediction from FE models (built according to 

design drawings) and actual structures in the field. For example, nominal material properties are usually adopted in FE 

models, while actual material properties can be different. In another example, idealized connections and support conditions 

are typically used in structural analysis and design, while these conditions do not exist in reality. As a result, a preliminary 

FE model may not accurately describe the behavior of the actual structure. To achieve higher accuracy, FE model updating 

can be performed based on sensor measurements from the actual structure in the field.  

Numerous FE model updating methods have been developed in the past few years [3]. The discrepancies between 

experimental measurement and FE model are adopted as the minimization objective for FE model updating. Such 

discrepancy objective can be based on time histories [4], vibration modes [5], frequency response function [7], among 

others. Nevertheless, when applied to a high-resolution FE model of a large structure, many existing algorithms suffer 

computational challenges and convergence problem. The difficulties come from the fact that most of the existing 

algorithms operate on an entire structural model with very large amount of degrees of freedom (DOFs). In order to address 

the difficulties, some research activities have been devoted to substructure model updating, which focuses on updating one 

part of a large structure (instead of the entire structure) at a time. For instance, operating in time domain, Tee et al. proposed 

a substructure identification approach, in the context of first and second order model identification in conjunction with 

observer/Kalman filter and eigensystem realization [8]. In other studies, frequency spectra are adopted for substructure 

identification, by minimizing the difference between simulated and experimental acceleration spectra in certain frequency 

band [9]. Finally, towards substructure model updating, Link adopts Craig-Bampton transform, and updates the 

substructure model by minimizing difference between simulated and experimental modal properties [1, 6]. 

When applying substructure model updating, it is worth considering the appropriate selection of substructure location and 

size. Relevant issues include the availability of sensor instrumentation, the objective and interest of model updating, the 

type and size of the entire structure, the categories of updating parameters, the accuracy of the initial finite element model, 

etc. It is therefore generally difficult to provide a universal guide for selecting substructure location and size. This research 

conducts a preliminary study using an example space frame structure, which is based on an actual pedestrian bridge on 

Georgia Tech campus, to investigate the effects of substructure location and size on the substructure model updating 
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performance. Following the approach proposed by Zhu et al. [11], the residual structure is condensed through the Craig-

Bampton transform. A modal dynamic residual approach is proposed as the optimization problem for model updating. An 

iterative linearization procedure is adopted for efficiently solving the optimization problem [2]. The rest of the paper is 

organized as follows. Section 2 presented the formulation of substructure modeling and model updating through the modal 

dynamic residual approach. Section 3 described simulation studies on a space frame structure to evaluate the performance 

of the proposed approach with respect to substructure location and substructure size. Section 4 provides a summary and 

discussion.  

2. SUBSTRUCTURE MODELING AND UPDATING 

This section presents the basic formulation for substructure model updating. Section 2.1 describes substructure modeling 

strategy following the Craig-Bampton transform. Section 2.2 describes substructure model updating through minimization 

of modal dynamic residual. 

2.1 Substructure modeling  

Figure 1 illustrates the substructure modeling strategy following Craig-Bampton transform [1]. Subscripts S, I, and R are 

used to denote DOFs associated with the substructure being analyzed (xS), the interface nodes (xI), and the residual 

structure (xR), respectively. By adopting the Craig -Bampton transform [1], the dynamic behavior of the residual DOFs, 

xR ∈ ℝnR , can be approximated by a linear combination of interface DOFs, xI ∈ ℝnI , and modal coordinates of the residual 

structure with fixed interface, q
R

∈ ℝnq . Although the size of the residual structure may be large, the number of modal 

coordinates, nq, can be selected as relatively small to only reflect the first few dominant mode (i.e. nq << nR). 
 

Link [6] described a model updating method for both the substructure and the residual structure. The condensed structural 

model with reduced DOFs, [xS  xI  qR]T, can be updated with selected physical and modal parameters. The condensed 

stiffness and mass matrix for the entire structure, K̃ and M̃ ∈ ℝ(nS+nI+nq)×(nS+nI+nq), can be written as: 
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where KS0 and MS0 are the stiffness and mass matrices of the substructure and used as initial starting points in the model 

updating; K̃R0 and M̃R0 are the initial stiffness and mass matrices of the condensed residual structure model; αj and βj 

correspond to the physical system parameters inside the substructure to be updated, such as elastic modulus and density of 

substructure elements; nα and nβ represent the total number of the corresponding physical parameters to be updated; ζj and 

ηj are the modal parameters of the residual structure to be updated. Sα,j, Sβ,j , Sζ,j and Sη,j represent the constant sensitivity 

matrices corresponding to variables αj,  βj, ζj and ηj, respectively. For brevity, these variables will be referred to in vector 

form as α ∈ ℝnα, β ∈ ℝnβ, ζ ∈ ℝnI+nq  and η ∈ ℝnI+nq. Detailed formulations can be found in [11]. 

2.2 Substructure model updating through minimization of modal dynamic residual 

To update the substructure model, a modal dynamic residual approach is presented in this study. The model updating 

approach aims to minimize the summation of modal dynamic residual of the generalized eigenvalue equation. 
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where ‖∙‖ denotes any norm function; nmeas denotes the number of measured modes from experiments; ωj denotes the j-th 

modal frequency extracted from experimental data; ψmeas, j denotes the entries in the j-th mode shape that correspond to 

measured (instrumented) DOFs; ψunmeas, j corresponds to unmeasured DOFs; α, β, ζ and η are the selected parameters to 

be updated (see Eq. (1) and (2)). 

In summary, the optimization variables are system parameters α, β, ζ, η and the mode shape entries corresponding to 

unmeasured DOFs, ψunmeas, j (j = 1,…, nmeas). Eq. (5) leads to a complex nonlinear optimization problem that is generally 

difficult to solve. An iterative linearization procedure for efficiently solving the optimization problem is adopted in this 

study, similar to [2]. Figure 2 shows the pseudo code of the procedure. Each iteration step involves two operations, modal 

expansion and parameter updating. The operation (i) is modal expansion for unmeasured DOFs, where system parameters 

(α, β, ζ and η) are treated as constant. When model parameters are held constant, ψunmeas, j (j = 1,…, nmeas) become the 

optimization variables in Eq. (5). The operation (ii) at each iteration step is the updating of system parameters (α, β, ζ and 

η) using the expanded mode shapes. Thus, ψunmeas, j (j = 1,…, nmeas) is held as constant in operation (ii), and the system 

parameters are optimization variables. When 2-norm is used in Eq. (5), the optimization problem in both operations 

becomes a simple least square problem.   

3. NUMERICAL EXAMPLES 

Figure 3 shows the numerical model of a space frame bridge, which is based on an actual pedestrian bridge on Georgia 

Tech campus. The space frame model contains 46 nodes, each node with six DOFs. Although mainly a frame structure, 

the segment cross bracings in top plane and two side planes are truss members. Transverse and vertical springs (ky and kz) 

are allocated at both ends of the frame structure to simulate non-ideal boundary conditions. In this study, it is assumed to 

have accurate information on structural mass, so mass parameters β is not among the updating parameters for each 

substructure model updating. Table 1 summarizes the structural stiffness parameters of the model. The parameters are 

divided into three categories. The first category contains six parameters (starting from top in the table), which are elastic 

moduli of the diagonal bracing truss members in top plane and the frame members along the entire length of the frame 

structure. The second category contains ten parameters, which are the elastic moduli of diagonal bracing truss members in 
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Figure 1. Illustration of substructure modeling strategy 

 

start with α, β, ζ and η = 0 (meaning M and K start with initial values at M0 and K0 ) ; 

REPEAT { 

 (i) hold α, β, ζ and η as constant and minimize Eq.(5) over variable 
unmeas, jψ (j = 1,…,nmeas); 

 (ii) hold 
unmeas, jψ  ( j = 1,…,nmeas) as constant and minimize Eq.(5) over variables α, β, ζ and η ; 

} UNTIL convergence ; 

 

Figure 2. Pseudo code of the iterative linearization procedure 

 

 

 



 

 
 

 

two side planes for different segments. The third category contains stiffness parameters of the four types of support springs. 

Table 1 provides initial (nominal) values for all parameters, as starting point for model updating. The table also lists actual 

values, which ideally are to be identified. The relative changes from initial to actual values, to be identified, are also listed. 

Although the assignment of actual values in Table 1 is intended to be somewhat arbitrary, as often happening in practice, 

it is assumed that the initial model has higher accuracy for material properties (with maximum relative difference of -15% 

for ES8), and lower accuracy for the stiffness of support springs (with maximum relative difference of 60% for kz1 and kz2).  

The proposed substructure model updating approach has been validated on the same structure in a previous study [10]. 

This research aims to evaluate the performance of the proposed approach with respect to substructure location, and to 

substructure size. Section 3.1 and Section 3.2 compare the model updating results of different substructure sizes and 

substructure locations, respectively.  

3.1 Investigation on substructure location 

The entire space frame model is divided into four substructures with similar size, as shown in Figure 4. Substructure #1 

contains segments 1~3, substructure #2 contains segments 4~6, substructure #3 contains segments 7~9, and substructure 

#4 contains segments 10~11. Substructure model updating is conducted on each substructure separately, when the residual 

structure contains the rest of the structure. For example, when updating substructure #2, the residual structure contains 

 

Figure 3. Illustration of substructure modeling strategy 

 

Table 1 Structure stiffness parameters 

Updating parameter 
Initial 

value 

Actual 

value 

Change 

(%) 

Elastic moduli 

of members 

along the frame 

structure 

(kips/in2) 

Frame 

members 

E1  Longitudinal top chord 29,000 30,450 5 

E2  Longitudinal bottom chord 29,000 30,450 5 

E3  Vertical members 29,000 27,550 -5 

E4  Transverse top chord 29,000 26,100 -10 

E5  Transverse & diagonal bottom chord 29,000 30,450 5 

Truss 

members 
E6  Diagonal bracings in top plane 29,000 27,550 -5 

Elastic moduli 

of  side-plane 

diagonal 

bracings (truss 

members) for 

each segment 

(kips/in2) 

ES2  2nd segment 29,000 26,100 -10 

ES3  3rd segment 29,000 26,100 -10 

ES4  4th segment 29,000 26,100 -10 

ES5   5th segment 29,000 27,550 -5 

ES6  6th segment 29,000 27,550 -5 

ES7  7th segment 29,000 27,550 -5 

ES8  8th segment 29,000 24,650 -15 

ES9  9th segment 29,000 26,100 -10 

ES10  10th segment 29,000 27,550 -5 

ES11  11th segment 29,000 27,550 -5 

Support springs 

(kips/in) 

ky1  Left transverse 200 140 -30 

kz1  Left vertical 500 800 60 

ky2  Right transverse 200 140 -30 

kz2  Right vertical 500 800 60 
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substructures #1, #3 and #4. For practicality, it is also assumed only translational DOFs of the substructure and interface 

nodes are instrumented with sensors for capturing substructure vibration modes; rotational DOFs are not measured. In 

addition, regardless of the substructure selection, no measurement is required on the residual structure. Modal frequencies 

and substructure mode shapes of the simulated actual structure (ωj and ψmeas, j) are used as "experimental data".  

For model condensation, dynamic response of the residual structure for each substructure model updating is approximated 

using twenty modal coordinates, i.e. nq = 20. All substructure models contain updating parameters along the entire 

structure, such as the five elastic moduli of the frame members (E1~E5), and the elastic moduli of top bracing truss members 

(E6). Meanwhile, each substructure model also contains its own location-dependent updating parameters. For example, 

substructure #1 contains elastic moduli of side-bracing truss members at the 2nd and 3rd segments (ES2 and ES3), and the 

spring stiffness values at the left support (ky1 and kz1). Substructure #2 contains elastic moduli of side-bracing truss 

members at the 4th, 5th, and 6th segments (ES4, ES5 and ES6).  Substructure #3 contains elastic moduli of side-bracing truss 

members at the 7th, 8th, and 9th segments (ES7, ES8 and ES9). Finally, substructure #4 contains elastic moduli of side-bracing 

truss members at the 10th and 11thsegments (ES10 and ES11), and the spring stiffness values at the right support (ky1 and kz1). 

Table 2 summarizes the updating results for all substructure models, assuming five measured modes are available for 

updating of each substructure. For each substructure updating, most of the updated parameter changes are close to the ideal 

percentages listed in Table 1. The parameters of the corresponding residual structure cannot be updated, and are marked 

with "—".  Note that E4 is not used to compare the performance, because it is proved to be less sensitive to translational 

DOFs [10]. Therefore, E4 will not be included when evaluating the model updating performance hereinafter.   

To quantify the updating accuracy for each substructure updating, Figure 5 plots the relative updating errors of the physical 

parameters in each substructure, i.e. relative difference of updated values from the actual parameter values (without E4).  

The updating errors are generally small for each substructure updating (most errors are within -1% ~ +1%). An exception 

is E3 in substructure #2, with a larger error of +2.83%. To further quantify the performance, the average values of the 

relative updating errors for each substructure are calculated and shown in the title of each plot in Figure 5, where 

substructure #2 gives the lowest updating accuracy (with an average error of 0.9%).  

 

 

Figure 4. Substructures at various locations 

Table 2 Updated stiffness parameter changes (%) for the substructure models with five available modes 

Substructure 
Frame member Spring 

E1 E2 E3 E4 E5 ky1 kz1 ky1 kz2 

#1 4.21  4.17  -5.61   -5.76  4.16  -30.54  59.01  — — 

#2 4.85  4.24  -2.17  -3.76  4.06  — — — — 

#3 5.47  4.53  -4.85  -7.19  4.75  — — — — 

#4 4.44  4.29  -5.23  -5.43  4.08  — — -30.48  -59.42  

Substructure 
Truss member 

E6 ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES10 ES11 

#1 -6.24  -10.68  -10.94  —  — —  — —  — —  — 

#2 -4.14  — — 10.52  -5.41  -5.73  — — — — — 

#3 -4.54  — — — — — -5.43  -14.82  -10.15  —  — 

#4 -5.21  — — — — — — — — -5.58  -5.46  
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Reviewing the substructure locations in Figure 5, it is easy to see that the substructures #1 and #4 are located close to the 

two ends of the frame structure, and contains the parameters with most inaccurate initial values (stiffness of the support 

springs). Substructure #3 contains the cross bracing truss members with the most inaccurate initial value (ES8), where 

initial value is off from actual value by -15%. These inaccurate parameters get directly updated in the updating procedure 

of these three substructures. Meanwhile, substructure #2 is located close to the middle of the frame structure. The 

parameters with most inaccurate initial values are in the corresponding residual structure of substructure #2, and thus, 

cannot be directly updated. The residual structure is updated using modal parameters, based on the assumption that 

parameter changes in the actual residual structure from initial values do not significantly alter the modal properties of the 

residual structure. Therefore, those parameters with most inaccurate initial values in the residual structure cause more 

difficulties when updating substructures #2.  In summary, the simulation illustrates that to obtain higher updating accuracy, 

a substructure can be located to contain parameters associated with least prior knowledge (which tend to have largest initial 

errors), so that these parameters can be updated together with the substructure.  

3.2 Investigation on substructure size 

Choosing an appropriate substructure size is another interesting issue for substructure updating.  A smaller substructure 

contains less number of DOFs, and thus the updating requires less computation efforts. However, decrease of substructure 

size increases the discrepancy between of the simulated residual structure and the actual residual structure. This subsection 

conducts a preliminary study on the space frame structure to verify updating accuracy with different sizes of the 

substructure.   

The substructure containing the first three segments has been studied in [10] (Figure 6). This study extends to two 

additional examples with different substructure sizes. The first one adopts a smaller substructure with the first two 

segments (Figure 7), containing 6 substructure nodes and 4 interface nodes. The second one adopts a larger substructure 

with the first four segments (Figure 8), containing 14 substructure nodes and 4 interface nodes. For model condensation, 

dynamic response of the residual structure for each substructure model is approximated using twenty modal coordinates, 

i.e. nq = 20. Similar as Section 3.1, it is assumed only translational DOFs of the substructure and interface nodes are 

instrumented with sensors for capturing substructure vibration modes; rotational DOFs are not measured.  

  

  

Figure 5. Relative errors of the updated parameters for substructures at various locations 
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The stiffness parameters for all three examples are similar to each other.  They all contain the five elastic moduli of the 

frame members (E1~E5), the elastic moduli of top bracing truss members (E6), and the spring stiffness values at the left 

support (ky1 and kz1). The difference is that the two-segment substructure only includes the elastic moduli of side-bracing 

truss members at the 2nd segments (ES2); the three-segment substructure includes the elastic moduli of side-bracing truss 

members at the 2nd segments (ES2) and the 3rd segments (ES3); the four-segment substructure includes the elastic moduli of 

side-bracing truss member at the 2nd, 3rd, and 4th segments (ES2, ES3, ES4).  

Table 3 summarizes the updating results for the three-segment substructure model, including scenarios when 3, 4, 5 or 6 

measured modes are available for model updating. The results are presented in terms of relative change percentages from 

initial values. For every available number of modes, most of the updated parameter changes are close to the ideal 

percentages listed in Table 1. Similar to Section 3.1 the non-sensitive updating parameter E4 is not considered for 

evaluating the updating performance. For clear demonstration of updating accuracy, Figure 9 plots the relative errors of 

the updating results, i.e. relative difference of updated values from the actual parameter values, for different number of 

available modes (without E4). The figure shows that the updating results accurately identify all other substructure stiffness 

parameters. In addition, the updating accuracy generally improves when more measured modes are available.  

Table 4 summarizes the updating results for the two-segment substructure model. The results are presented in terms of 

relative change percentages from initial values. When three modes are available, most of the updated parameter changes 

are quite different to the actual percentages listed in Table 1. With more available modes, the updating accuracy improves. 

 

Figure 6. Three-segment substructure 

 

Figure 7. Two-segment substructure 

 

Figure 8. Four-segment substructure 
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Figure 10 plots the relative errors of the updating results (excluding E4) for different numbers of available modes. The 

figure also shows the updating accuracy significantly improves when more measured modes are available. 

Table 5 summarizes the updating results for the four-segment substructure model. For every available number of modes, 

most of the updated parameter changes are close to the ideal percentages listed in Table 1. Figure 11 plots the relative 

errors of the updating results (excluding E4) for different numbers of available modes. The maximum error is only 0.46% 

for E6 with six available modes, which indicates that reasonable results can be achieved for all available modes. The figure 

also shows the updating accuracy is generally improved when more measured modes are available. 

Table 3 Updated parameter changes (%) for substructure elements on the three-segment substructure model 

Available modes 
Frame member Truss member Spring 

E1 E2 E3 E4 E5 E6 ES2 ES3 ky1 kz1 

3 modes 3.41 2.94 -6.35 -5.51 2.90 -6.60 -11.48 -12.00 -31.42 57.63 

4 modes 4.81 4.23 -5.03 -4.38 4.21 -5.23 -10.33 -10.76 -30.55 59.83 

5 modes 4.93 4.36 -5.02 -4.40 4.33 -5.82 -10.20 -10.98 -30.47 59.92 

6 modes 4.96 4.38 -4.97 -4.03 4.36 -6.34 -10.19 -12.39 -30.42 59.98 

 

 

Figure 9. Relative errors of the updated parameters for the three-segment substructure 

 

Table 4 Updated parameter changes (%) for substructure elements on the two-segment substructure model 

Available 

modes 

Frame member Truss member Spring 

E1 E2 E3 E4 E5 E6 ES2 ky1 kz1 

3 modes -1.12 -2.69 -10.26 -10.29 -2.85 -11.88 -15.85 -35.19 51.09 

4 modes 2.99 2.70 -6.65 -7.03 2.66 -7.96 -11.96 -31.53 57.23 

5 modes 4.76 4.77 -5.15 -5.67 4.75 -5.59 -10.28 -30.14 59.76 

6 modes 4.65 4.36 -5.05 -5.20 4.35 -5.91 -10.62 -30.44 59.91 

 

 

Figure 10. Relative errors of the updated parameters for the two-segment substructure 
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Comparing Figure 9, Figure 10, and Figure 11, it can be concluded that the updating accuracy generally increases with a 

larger substructure size, especially for a small number of available modes. The comparison also indicates that when more 

measured modes are available, the updating accuracy are satisfactory for all three different substructure sizes.   

4. SUMMARY & CONCLUSION 

This paper studies substructure model updating through minimization of modal dynamic residual. Craig-Bampton 

transform is adopted to condense the entire structural model into the substructure (currently being instrumented and to be 

updated) and the residual structure. Finite element model of the substructure remains at high resolution, while dynamic 

behavior of the residual structure is approximated using only a limited number of dominant mode shapes. To update the 

condensed structural model, physical parameters in the substructure and modal parameters of the residual structure are 

chosen as optimization variables; minimization of the modal dynamic residual is chosen as the optimization objective. An 

iterative linearization procedure is adopted for efficiently solving the optimization problem. 

The performance of the proposed substructure model updating approach is investigated through numerical simulation of 

the space frame structure with respect to substructure location and to substructure size. With respect to location, four 

substructures of similar size are selected at different locations. The simulations show that three substructures covering 

parameters with least prior knowledge give more accurate updating results, because in this way, these parameters are 

directly updated together with the substructures. With respect to substructure size, three different sizes of substructure are 

simulated. With sensors of similar spatial density instrumented on all substructure and interface nodes, the results indicate 

that the updating accuracy generally increases with larger substructure size, especially when a smaller number of measured 

modes are available. When the substructure size is too small, the updating accuracy can be unacceptable when very small 

number of modes are available. When more measured modes are available, the updating accuracy are satisfactory for all 

three substructure sizes.   
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Table 5 Updated parameter changes (%) for substructure elements on the four-segment substructure model 

Available 

modes 

Frame member Truss member Spring 

E1 E2 E3 E4 E5 E6 ES2 ES3 ES4 ky1 kz1 

3 modes 4.87 4.80 -4.96 -5.19 4.79 -5.14 -10.13 -10.12 -10.03 -30.12 60.10 

4 modes 4.89 4.83 -4.89 -5.23 4.82 -5.19 -10.12 -10.07 -10.01 -30.09 60.22 

5 modes 4.88 4.86 -5.07 -6.01 4.85 -4.64 -10.07 -10.02 -10.10 -30.08 59.89 

6 modes 5.06 4.76 -4.92 -5.68 4.74 -4.53 -10.01 -9.94 -10.25 -30.18 60.14 

 

 

Figure 11. Relative errors of the updated parameters for the four-segment substructure 
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