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ABSTRACT   

In order to assess structural safety conditions, many vibration-based damage detection methods have been developed in 

recent years. Among these methods, transmissibility function analysis can utilize output data only, and proves to be 

effective in damage detection. However, previous research mostly focused on experimental validation of using 

transmissibility function for damage detection. Very few studies are devoted to analytically investigating its performance 

for damage detection. In this paper, a spring-mass-damper model with multiple degrees-of-freedom is formulated for 

further analytical studies on the damage sensitivity of transmissibility functions. The sensitivity of transmissibility 

function against structural mass and stiffness change is analytically derived and validated by numerical examples. 
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1. INTRODUCTION  

Large-scale civil structures, such as bridges, dams, and high-rise buildings, may be subjected to severe natural disasters 

or harsh operational environment. Structural condition may deteriorate significantly over the life cycle. Taking bridges 

as an example, an ASSHTO [1] report mentioned that “while 50 years ago the nation faced a historic period of bridge 

construction, today it faces a historic period of bridge repair and reconstruction.” According to the ASCE 2009 report on 

America’s infrastructure [2], more than one fourth of the bridges in the United States are categorized as structurally 

deficient or functionally obsolete. It was estimated that a $17 billion annual investment is needed to substantially 

improve the bridge conditions, yet currently, only $10.5 billion is spent annually on the construction and maintenance of 

bridges. In order to efficiently utilize available resources and prioritize retrofit tasks, there is a pressing demand for 

reliable techniques that are capable of diagnosing structural conditions.  

In recent years, various damage detection algorithms have been developed for identifying the existence of damage in 

structures [3]. Among these methods, transmissibility function analysis attracted considerable interest due to its 

effectiveness in damage identification and requirement for output data only. A number of researchers investigated the 

application of transmissibility function analysis. For example, Zhang et al. used translational and curvature 

transmissibility functions to locate damage on a composite beam [4]. The effects of operational and environmental 

variability on the transmissibility function analysis were analyzed by Kess and Adams [5]. Their work suggested that the 

damage detection accuracy based on transmissibility function could be improved by identifying specific frequency 

ranges that are more sensitive to damage and immune to sources of uncertainties. Devriendt and Guillaume [6] 

concluded that arbitrary forces could be used to perform the transmissibility-function-based operational modal analysis, 

as long as the structure is persistently excited in the frequency range of interest. Zhu et al. [7] successfully employed 

transmissibility function analysis to detect damage on a laboratory frame using data collected by mobile sensing nodes. 

Nevertheless, little research has been devoted to exploring the nature of transmissibility functions for damage detection 

in an analytical manner. For example, Johnson and Adams explored the explicit formulation of transmissibility functions 

using a three degrees-of-freedom (DOFs) system [8]. However, analytical formulation of transmissibility functions for 

structures with an arbitrary large number of DOFs has not been reported. 

This study investigates the analytical formulation for the damage sensitivity of transmissibility functions based on a 

general multi-DOF spring-mass-damper system. For the multi-DOF system, the transmissibility functions are expressed 

in recursive form using symbolic inversion of tri-diagonal matrices. Section 2 of this paper presents an analytical 
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derivation for the damage sensitivity of transmissibility functions, which illustrates the potential of using change in 

transmissibility functions to identify and locate damage. Two types of damage scenarios are studied. The first scenario 

considers mass change, and the second scenario considers stiffness loss. Section 3 presents the numerical simulation 

results that validate the conclusion from the derivation. A five-story shear-building model is built in ANSYS, which is 

equivalent to a 5-DOF spring-mass-damper system. The two types of damage scenarios discussed in Section 2 are 

studied in the simulation. Section 4 summarizes this paper and discusses future research work. 

 

2. TRANSMISSIBILITY FUNCTION ANALYSIS FOR A MULTI-DOF SPRING-MASS-

DAMPER SYSTEM 

 

In this section, the transmissibility function for a multi-DOF spring-mass-damper system is first analytically derived. 

The sensitivity of the transfer function for two damage scenarios is then studied. The first damage scenario considers 

mass change, and the second damage scenario considers stiffness loss. 

 

2.1 Transmissibility function for a multi-DOF spring-mass-damper system 

For a multi-DOF spring-mass-damper system (Figure 1), the equations of motion can be formulated as:  

( ) ( ) ( ) ( )t t t tMx +Cx + Kx = f
 (1) 

where ( )tx , ( )tx and ( )tx denote the displacement, velocity and acceleration vectors of the system, respectively. f(t) 

denotes the external excitation; M, C, and K are the mass, damping and stiffness matrices, respectively, which can be 

expressed as the follows: 
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Figure 1. A multi-DOF spring-mass-damper system 
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(4) 

Here “Diag” denotes a diagonal matrix, and “Sym.” denotes the symmetric part of a matrix.  

Applying the Laplace transform (assuming zero initial condition), the time-domain formulation can be converted to: 

( ) ( ) ( )s s sX = H F
 (5) 

where H(s) is known as the transfer function matrix and s is the complex variable. 

The acceleration vector in the complex domain can be expressed as: 

2( ) ( ) ( )s s s sA = H F
 

(6) 

The transmissibility function Tij(s) between the output i and reference-output j is defined as the ratio of two acceleration 

responses Ai(s) and Aj(s). Let h(s) denote one row of H(s), then 
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If only one external excitation fk(t) is applied to the k-th DOF of the structure, Equation (7) can be further simplified 

since the external excitation is canceled out: 
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(8) 

Thus, the transmissibility function Tij(s) is determined by two entries in the transfer matrix, Hik(s) and Hjk(s). It is known 

that the transfer matrix H(s) is equal to the inverse of matrix B(s), where  
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Note that matrix B is a symmetric tridiagonal matrix.  

According to [9], the entries of  H(s) can be expressed in a recursive form: 

1

1

               

[ ]

i j jj

ij ji

ii i i

U U H i j

H H i j

B X Y i j





 


 


    

(10) 

where the intermediate variables are computed as: 
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From Equation (11), the recursive relationship between Ui and Ui-1 can be derived as:  
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Consider a special case in which acceleration measurements are taken at two neighboring DOFs at a time, following the 

sequence 1 and 2, 2 and 3, …, (N-1) and N. For each measurement at two neighboring DOFs, an external excitation is 

applied at the latter DOF in the pair. For example, the measurement is taken at DOFs 2 and 3, when the excitation is 

applied at DOF-3. In this case, according to Equations (8) and (10), the transmissibility functions between each two 

neighboring DOFs can be expressed as: 
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From Equation (11), when s is large enough, U1 can be simplified  as  
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Substituting Equation (14) into Equation (12), when s is large enough, U2 can be simplified as 
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Similarly, when s is large enough, such that 
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the denominator and the numerator of Ui are dominated by the term with the highest power of s, and Ui  can be 

approximately expressed as 
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The difference between the transmissibility functions of the undamaged structure and the damaged structure, 
i , is used 

for damage detection. 
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where the superscript “
D
” refers to the damaged structure. 

A damage indicator can be defined as the sum of the absolute value of i  in certain frequency range of ω: 
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where sk = jωk and j is the imaginary unit. 



 

 
 

 

2.2 Damage scenario I – mass change 

In damage scenario I, suppose that damage occurs at DOF n, with the mass mn changed to D

nm . In experimental studies, a 

mass change, which affects structural dynamics properties, is often used to represent a reversible damage. According to 

Equation (9), only entry Bnn 
in B matrix will change due to the damage, and all other entries remain the same. Let D

nnB  

denote the corresponding entry in B matrix with the changed mass. From Equation (12), it is concluded that after the 

damage, Ui will remain the same for i < n, and will change to Ui
D
  for  i ≥ n. 

The difference in transmissibility functions, 
i , can be categorized into three cases by different measurement locations 

(Figure 2), and simplified when s is large enough (i.e. when the inequalities in Equation (16) holds).  

Case I (a) i < n  

As shown in Figure 2(a), the measurement is taken at two neighboring DOFs i and i+1, while the external excitation is 

applied at DOF i+1, with i < n. As previously described, Ui will remain unchanged after damage, for i < n. From 

Equation (18), the transmissibility function difference 
i is equal to zero in this case, which means the mass change at 

DOF n does not cause change in transmissibility function Tij (i < n). 

Case I (b) i = n  

As shown in Figure 2(b), the measurement is taken at two neighboring DOFs n and n+1, while the external excitation is 

applied at DOF n+1. As previously described, when i = n, Bnn is the only term in Equation (12) that changes due to the 

damage, and Un-1 will remain unchanged after damage. Substituting Equation (12) into Equation (18), the 

transmissibility function difference 
i n  can be derived as: 
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Substituting Equation (14) into the above, when s is large enough, 
n can be simplified as: 
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This means the mass change at DOF n causes change in transmissibility function Tn(n+1). 

Case I (c) i > n  

As shown in Figure 2(c), the measurement is taken at two neighboring DOFs i and i+1, while the external excitation is 
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Figure 2. Mass change at DOF n, while measurements are taken at DOFs i and i+1.The external excitation is 

applied at DOF i+1: (a) i < n; (b) i = n; (c) i > n 



 

 
 

 

applied at DOF i+1 (i > n).  As previously described, when i > n, the B** terms in Equation (12) remain unchanged due 

to damage, and only the Ui-1 term changes. Substituting Equation (12) into Equation (18), the transmissibility function 

difference 
i can be derived as: 

  

( 1) ( 1)

( 1) 1( 1) 1

( 1) ( 1) 1

( 1) 1 ( 1) 1

         

i i i iD

i i i D

ii i i iii i i i

i i i i i

D

ii i i i ii i i i

B B
U U

B B UB B U

B B

B B U B B U





 

  

  

   

 
   




 

 

(22) 

Substituting Equation (14) into the above, when s is large enough, 
i can be simplified as: 
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This means that when the measurement locations move further away from the mass change, the transmissibility function 

difference caused by damage reduces at the rate of s
-2

 after every pair of measurement locations.  

In summary, when i < n, the transmissibility functions are not affected by the damage and the difference i  remains 

zero; when i = n, for large s, the transmissibility function difference n  approximately has the order of  s
-1

; when i > n, 

for large s, i  
decreases at the rate of s

-2
 as DOF i increases. Therefore, we can conclude that in higher frequency range 

(note that s = jω), the transmissibility function difference at the damage location, n , should be approximately the 

largest. All other transmissibility function differences, ( )i i n  , should be relatively small. As a result, the damage 

indicator, DIi, as defined in Equation (19), should be approximately the largest when i = n, i.e. when the excitation and 

measurement are next to the damage (Figure 2(b)). 

 

2.3 Damage scenario II – stiffness loss 

In damage scenario II, suppose that damage occurs between DOFs n-1 and n, as the stiffness reduction from kn to
D

nk . 

According to Equation (9), only entries B(n-1)(n-1), B(n-1)n , Bn(n-1) and Bnn in B matrix will change due to the damage, and 
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Figure 3. Stiffness loss between DOFs n-1 and n, while measurements are taken at DOFs i and i+1. An external 

excitation is applied at DOF i+1: (a) i < n-1; (b) i = n-1; (c) i = n; (d) i > n 

 



 

 
 

 

all other entries remain the same. Let   1 1
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and D

nnB  denote the corresponding entries in B matrix with 

stiffness loss. Again from Equation (12), it is concluded that after the damage, Ui will remain the same for i<n-1, and 

will change to Ui
D
 for i ≥ n-1. 

The difference in transmissibility functions,
i , can be categorized into four cases by different measurement locations 

(Figure 3), and simplified when s is large enough (i.e. when the inequalities in Equation (16) holds).  

Case II (a) i < n-1  

As shown in Figure 3(a), the measurement is taken at two neighboring DOFs i and i+1, while the external excitation is 

applied at DOF i+1, with i < n-1. As previously described, Ui will remain unchanged after damage, for i < n-1. From 

Equation (18), the transmissibility function difference 
i is equal to zero in this case, which means the damage does not 

cause change in transmissibility function Tij (i < n-1). 

Case II (b) i = n-1   

As shown in Figure 3(b), the measurement is taken at two neighboring DOFs n-1 and n, while the external excitation is 

applied at DOF n. As previously described, when i = n-1, B(n-1)(n-1) and B(n-1)n  are the only terms in Equation (12) that 

change due to the damage, and Un-2 will remain unchanged after damage. Substituting Equation (12) into Equation (18), 

the transmissibility function difference 
1i n   can be derived as: 
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Substituting Equation (14) into the above, when s is large enough, 
1n 

can be simplified as: 
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This means the transmissibility function difference caused by damage has the order of s
-2

 in this case. 

Case II (c) i = n  

As shown in Figure 3(c), the measurement is taken at two neighboring DOFs n and n+1, while the external excitation is 

applied at DOF n+1. As previously described, when i = n, Bnn, Bn(n-1) and  Un-1 are the terms in Equation (12) that change 

due to the damage. Substituting Equation (12) into Equation (18), the transmissibility function difference 
i n  can be 

derived as: 

 
  

( 1) ( 1)

( 1) 1( 1) 1

( 1) ( 1) 1 ( 1) 1

( 1) 1 ( 1) 1

      

n n n nD

n n n D D D

nn n n nnn n n n

D D D

n n nn nn n n n n n n

D D D

nn n n n nn n n n

B B
U U

B B UB B U

B B B B U B U

B B U B B U


 

  

    

   

 
   



  


 
 

(26) 

Substituting Equation (14) into the above, when s is large enough, n can be simplified as: 
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This means the transmissibility function difference caused by damage has the order of s
-3

 in this case. 

Case II (d) i > n  



 

 
 

 

As shown in Figure 3(d), the measurement is taken at two neighboring DOFs i and i+1, while the external excitation is 

applied at DOF i+1 (i > n).  As previously described, when i > n, the B** terms in Equation (12) remain unchanged due 

to damage, and only the Ui-1 term changes. Substituting Equation (12) into Equation (18), the transmissibility function 

difference 
i can be derived as: 
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Substituting Equation (14) into the above, when s is large enough, 
i can be simplified as: 
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Similar as Case I(c),  this means that when the measurement locations move further away from the damage, the 

transmissibility function difference caused by damage reduces at the rate of s
-2

 after every pair of measurement locations.  

In summary, when i < n-1, the transmissibility functions are not affected by the damage and the difference i  remains 

zero; when i = n-1, for large s, the transmissibility function difference 1n   approximately has the order of  s
-2

; when i = 

n, for large s,
 
the transmissibility function difference n  approximately has the order of  s

-3
; when i > n, for large s, the 

transmissibility function difference i  decreases at the rate of s
-2

 as i increases. Therefore, we can conclude that in 

higher frequency range, the transmissibility function difference 1n   at the damage location should be approximately the 

largest and n  the second largest. All other transmissibility function differences, ( , 1)i i n n   , should be relatively 

small. As a result, the damage indicator, DIi, as defined in Equation (19), should be approximately the largest when i = 

n-1, i.e. when the measurement locations are at two sides of the stiffness loss(Figure 3(b)). 

 

3. NUMERICAL SIMULATION 

 

To validate the analytical studies in Section 2, a five-story shear-building 

model is built in ANSYS for simulating a 5-DOF spring-mass-damper system. 

The two types of damage scenarios discussed in Section 2 are studied. The first 

damage scenario considers an additional mass fixed at the second floor, and 

the second damage scenario considers 20% stiffness loss introduced to the 

elements of one column between the 2
nd

 and 3
rd

 floors. 

 

3.1 Finite element model 

Figure 4 shows the five-story shear-building model in ANSYS. Simulating a 

laboratory structure, the columns are steel and the floors are aluminum. The 

dimension of each floor is identical: 12 in. long, 12 in. wide and 0.5 in. thick. 

The two columns have the same rectangular section (6 in. × 0.008 in.).  The 

total height of the building is 60 in., with 12 in. per story. Each floor is 

connected with the columns through rigid constraints. Fixed boundary 

conditions are adopted at the bases of the two columns. The material properties 

of the floors and columns are listed in Table 1. This five-story building model 

is equivalent to a 5 DOF spring-mass-damper system, because the floor 

stiffness is much larger than the stiffness of the columns. Modal superposition 

algorithm is used for dynamics simulation, and 4% modal damping is assigned 

       

1st floor

2nd floor

3rd floor

4th floor

5th floor

 

Figure 4.  A five-story shear-building 

model in ANSYS for simulating a 5-

DOF spring-mass-damper system.  



 

 
 

 

for each mode. The first five natural frequencies of the shear building are 2.98, 8.78, 14.09, 18.43, and 21.31 Hz. 

To follow the measurement scheme described in Section 2, assume two accelerometers are used for measuring horizontal 

floor vibration every time. Acceleration measurements are taken for floor pairs 1-2, 2-3, 3-4, and 4-5 in sequence. For 

each measurement, an ideal impact excitation is applied at the higher floor. For example, the measurement is taken at the 

2
nd

 and 3
rd

 floors, when the excitation is applied at the 3
rd

 floor. The sampling rate is set to 1,000 Hz, and each 

measurement duration is set to 10 seconds. 

Table 1. Material properties of the five-story shear-building model 

Material properties Floor Column 

Young's modulus (ksi) 10,000 (aluminum) 29,000  (steel) 

Poisson’s ratio 0.3 0.3 

Density (lb/in
3
) 0.098 0.285 

 

Figure 5 plots the acceleration data at the 2
nd

 and 3
rd

 floors when the ideal impact is applied at the 3
rd

 floor of the 

undamaged structure. Figure 6 shows the magnitude of the two frequency spectra, i.e. the fast Fourier transform (FFT) 
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Figure 5. Example acceleration time histories when the hammer impact is applied at the 3
rd

 floor: (a) acceleration at 

the 2
nd

 floor; (b) acceleration at the 3
rd

 floor. 
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Figure 6. Example acceleration spectra when the hammer impact is applied at the 3
rd

 floor: (a) acceleration spectra 

at the 2
nd

 floor; (b) acceleration spectra at the 3
rd

 floor. 

0 5 10 15 20 25 30

10
0

A
m

p
lit

u
d
e

Frequency (Hz)  

Figure 7. Transmissibility function T23 calculated using the example acceleration data. 



 

 
 

 

results of the acceleration time history. According to the definition (Equation (7)), 

transmissibility function T23 is calculated as the ratio between the two frequency 

spectra, as shown in Figure 7.  

3.2 Damage scenario I – additional mass 

In damage scenario I, a mass block of 1 lb is attached on the 2
nd

 floor (Figure 8). In 

contrast, the weight of the each floor is about 7 lbs. With the mass block attached, 

acceleration records are sequentially obtained at floor pairs 1-2, 2-3, and so on.  

Same as the measurement scheme for the undamaged structure, for each floor pair, 

an ideal impact is applied at the higher floor in the pair. 

After obtaining all the acceleration records, the transmissibility functions T12, T23, 

T34, and T45 for both the undamaged and damaged structures are calculated. Figure 9 

presents the magnitude of the transmissibility functions of both the undamaged and 

damaged structures. It is shown that |T12| and | 12

DT | are almost the same at any 

frequency range. At higher frequency range, e.g. 25~30Hz, |T23| and | 23

DT | have the 

largest difference. This agrees with the conclusion from the analytical formulation 

in Section 2.2.    

The damage indicators are calculated based on the transmissibility function 

difference in frequency range 25~500Hz (Equation (19)), and shown in Figure 10. 

The largest damage indicator is DI2-3, and the other damage indicators are much 

smaller, which again agrees with conclusion made in section 2.2, i.e. the largest 

damage indicator occurs next to the damage location. 
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Figure 8. Damage scenario I – 

A 1lb additional mass is 

attached on the 2
nd

 floor. 
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    Figure 9. Comparison of transmissibility functions between undamaged and damaged (scenario I) structures 
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Figure 10. Damage scenario I - the damage indicators at four measurement floor pairs 



 

 
 

 

3.3 Damage scenario II – stiffness loss 

In damage scenario II, a 20% stiffness loss is introduced to the elements of one 

column between the 2
nd

 and 3
rd

 floors (Figure 11). After the stiffness loss, 

acceleration records are sequentially obtained at floor pairs 1-2, 2-3, and so on.  

Same as the measurement scheme for the undamaged structure, for each floor pair, 

an ideal impact is applied at the higher floor in the pair.  

After obtaining all the acceleration records, the transmissibility functions T12, T23, 

T34, and T45 for both the undamaged and damaged structures are calculated.  Figure 

12 presents the magnitude of the transmissibility functions of both the undamaged 

and damaged structures. It is shown that |T12| and | 12

DT | are almost the same at any 

frequency range. At higher frequency range, e.g. 25~30Hz, |T23| and | 23

DT | have the 

largest difference. This also agrees with the conclusion from the analytical 

formulation in Section 2.3. 

The damage indicators are also calculated based on the transmissibility function 

difference in frequency range 25~500Hz (Equation (19)), and shown in Figure 13. 

The largest damage indicator is DI2-3, the second largest is DI3-4, and all other 

damage indicators are much smaller, which again agrees with the conclusion made 

in section 2.3, i.e. the largest damage indicator occurs near the damage location. 
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Figure 11. Damage scenario II –

20% stiffness loss is introduced 

to the elements of one column 

between 2
nd

 and 3
rd

 floors. 
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Figure 12. Comparison of transmissibility functions between undamaged and damaged (scenario II) structures 
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Figure 13. Damage scenario II - the damage indicators at four measurement floor pairs 



 

 
 

 

4. SUMMARY AND DISCUSSION 

Using a multi-DOF spring-mass-damper system, this study investigates the analytical derivation for structural damage 

detection using changes in transmissibility function. Two damage scenarios are considered. The first damage scenario 

considers mass change, and the second damage scenario considers stiffness loss. Analytical derivations show that the 

difference in transmissibility functions between undamaged and damaged structures is sensitive to both damage 

scenarios and can be used for damage identification and localization. With the proposed measurement and excitation 

scheme, the largest damage indicator should approximately occur near the damage location. To validate the analytical 

derivations, numerical simulation is conducted, where a five-story shear-building model is built in ANSYS for 

simulating a 5-DOF spring-mass-damper system. For both damage scenarios, transmissibility function analysis is 

applied, and damage identification results agree with the conclusion from the analytical study. 

Future research can be focused on the experimental validation for this analytical study. Another interesting topic is to 

identify multiple damage occurrences in a multi-DOF spring-mass-damper system using transmissibility functions. 

Besides, more complex structural models, e.g. trusses or frames, need to be investigated for analytically studying the 

damage sensitivity of the transmissibility functions.  
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