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Abstract: This paper addresses the simultaneous input-state estimation problem for discrete-time linear 

stochastic systems with unknown input. A unifying minimum-mean-square-error (MMSE) estimation framework 

is presented for a comprehensive characterization and direct comparison among a few popular input estimation 

approaches. In this work, the dynamical model of the input is assumed to be unknown and the input is treated as a 

random variable at each time step. To account for the unknown input dynamics, we propose an input estimator that 

adopts a white Gaussian input model with a finite covariance, short-named as the FIC (finite input covariance) 

estimator. Theoretical formulation of the FIC estimator is first compared with two other estimators, one using a 

Gaussian random walk input model combined with augmented Kalman filter (AKF) and another one using a 

deterministic input model with weighted least squares (WLS) estimation. Based on the unifying MMSE framework 

presented in this paper, it is proved that when the input covariance of the FIC estimator approaches infinity and the 

feedthrough matrix has full-column rank, the estimator is equivalent to the well-known WLS estimator. 

The FIC estimator is validated and compared with the AKF and WLS estimator using simulated measurements 

from 2-story shear structure and experimental measurements from a full-scale concrete frame. The 2-story shear 

structure is excited by two different types of input and the corresponding acceleration responses are used to compare 

estimator performance. With only acceleration measurements, the FIC estimator eliminates a low-frequency drift 

error in the estimated input and states with a tight estimation confidence interval. Detailed discussion on the effect 

of estimator covariances on input estimation is also provided. A priori knowledge of the statistical property of the 

unknown input can provide insights in the tuning of FIC estimator covariances. In addition, field acceleration 

measurements from a full-scale concrete frame under shaker excitation are used to compare the estimation results 

and validate the proposed FIC estimator. The FIC estimator is shown to provide better estimates with tighter 

estimation confidence interval in comparison to the AKF and WLS estimators. 
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1. Introduction 

State estimation of dynamical systems subject to unknown inputs plays a vital role in many engineering 

applications, such as fault detection, geophysical applications, communication systems, target tracking and 

navigations [1, 2]. For example, in some structural engineering applications, it is often expensive or not feasible to 

measure the input/excitation directly. Instead, an explicit estimate of the unknown input can be performed. The 

simultaneous input-state estimation problem can be grouped into two major categories based on the system model: 

(1) when the output 𝑦 does not contain the unknown input 𝑢 (i.e. 𝐷 = 0, without direct feedthrough); (2) when the 

output contains all the unknown input (i.e. 𝐷 ≠ 0, with direct feedthrough).  

Among early contributions to account for unknown input or bias, Friedland proposed a two-stage Kalman filter 

to estimate a constant bias by augmenting the state vector with the unknown bias vector [3]. Verriest generalized the 

constant bias assumption to time-varying bias/input signals with random initial conditions as well as for systems with 

delays [4]. This generalization required a state space model of the unknown input. For problems without state space 

model of the input, Kitanidis proposed a recursive state estimator by minimizing the trace of the state estimation 

error covariance for systems without direct feedthrough [1]. This approach provided an optimal state estimation in 

the sense of minimum mean square error (MMSE), but did not explicitly estimate the unknown input. Darouach et 

al. extended Kitanidis’s estimator to systems with direct feedthrough for state estimation under unknown inputs [5]. 

To obtain an explicit estimation of the unknown input, Gillijns et al. combined the state estimation from Kitanidis 

with a weighted least squares (WLS) estimator of the unknown input for systems with direct feedthrough [6]. Lourens 

et al. extends the WLS filter for reduced-order models especially when the number of sensors exceeds the model 

order [7]. Maes et al. extended the WLS filter to consider correlated process and measurement noise [8] and validated 

the algorithm using field measurements of a footbridge for impact force identification [9]. It should be noted that 

when WLS is used in the aforementioned algorithms to estimate the unknown input, the input is treated as 

deterministic at each time step without utilizing any estimation results from prior time steps. Another approach is to 

treat the unknown input as a random variable and augmenting it to the state vector based on a Gaussian random walk 

model, proposed by Lourens et al. for force identification [10]. In this approach, the covariance of the unknown input 
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needs to be tuned properly based on an L-curve method. It was also reported that when using acceleration 

measurements alone, a low-frequency drift occurs in both the estimated input and state and the augmented system 

suffers from un-observability issue [10]. To improve the estimator performance and eliminate the drift error, Azam 

et al. proposed a dual Kalman filter by switching the measurement update of the unknown input and time update of 

state, thus separating input and state estimation into two stages [11]. This approach has the underlying assumption 

that the unknown input and state are uncorrelated. Although it is shown to be able to reduce drift error, similar as the 

augmented Kalman filter, it also required a properly tuned covariance and the estimator performance is quite sensitive 

to the parameter [12]. Other approaches to reduce the drift error include the use of post-processing high-pass filtering 

[9], fictitious displacement measurements [13], and an online high-pass filter [14].  

Recently, to overcome the drift error, researchers have started to incorporate prior information of the unknown 

input in the estimation process. Valikhani, et al. [15] proposed a Bayesian framework to include prior distribution of 

the unknown input for systems with and without direct feedthrough of the input. The input covariance matrix is tuned 

offline through the L-curve method, using the entire measurement time histories. Similarly, Sedehi, et al. [16] 

proposed a sequential Bayesian estimation framework by assuming that the input covariance is obtained from the 

input estimation error covariance at the preceding time step; the noise covariance matrices are updated in real time 

using asymptotic approximations.  Besides assuming prior distribution of the unknown input, dynamic models of the 

input can also be combined in the estimation process [17-20].  For example, Nayek, et al. [17] proposed to use a 

Gaussian process latent force model for the unknown input; similar to the L-curve method, offline calibration of the 

input hyperparameters need to be first tuned using the entire measurement time histories before online estimation 

can be executed.  

In input-state estimation, modeling accuracy of the underlining dynamical system can affect the estimation 

accuracy. Some researchers proposed to estimate system parameters along with input and state estimation. Sun, et 

al. [21] proposed an iterative Bayesian inference-based regularization approach for input estimation where drift error 

can be removed. This offline method updates both structural parameters and unknown input forces iteratively via 

regularized optimization process. In addition, the unknown force time history and the regularization parameters can 

be updated iteratively to estimate traffic-induced nodal excitations through least squares [22]. In addition to the 

offline least squares approaches, recursive estimators are also proposed to estimate input, state and system parameters 
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simultaneously using heterogeneous sensor measurements. Examples include extended Kalman filter combined with 

parametric model reduction for linear structures [23], unscented Kalman filter [24, 25] and extended Kalman filter 

[26, 27] for nonlinear structures. When a linear time invariant model is adopted for a structure, vibration modal 

properties (such as natural frequencies, mode shapes, and damping ratios) extracted from experimental measurements 

can be used to first evaluate the behavioral similarities between an as-built structure and the corresponding structural 

model.  If significant discrepancies are found, frequency-domain approaches can be used to update certain model 

parameters based on vibration modal properties extracted from experimental data, a process known as finite element 

model updating  [28-32]. 

When monitoring the structural response of civil structures, acceleration measurements are extensively used and 

additional displacement measurement may not be available in each field test scenario. Therefore, the low-frequency 

drift error when displacement sensors are not available needs to be further studied to guarantee a good estimate of 

both the unknown input and state, especially for long-term structural monitoring.  In this paper, we propose an online 

input-state estimator by assuming the prior distribution of the unknown input as white Gaussian. An explicit estimate 

of the input can be derived so that the drift error can be eliminated when only acceleration measurements are 

available. Although it is common to treat the unknown input as zero-mean white Gaussian noise when using output-

only data for modal identification [33] and state estimation [34], an explicit estimation of both input and state needs 

to be derived under the white Gaussian input assumption. Under the white Gaussian input assumption, the un-

observability issue presented in early research studies can be resolved. In comparison to the method proposed in [15], 

three sets of estimator equations are derived and simplified to account for unknown input with small, large and 

infinite covariances, respectively.  

In addition, this paper uses an MMSE framework to systematically compare the proposed white noise estimator 

with finite input covariance (FIC) with the random walk estimator based on augmented Kalman filter (AKF) 

proposed in [10] and the WLS estimator proposed in [6].  Underlying connections between the three estimators are 

revealed through the unifying MMSE framework.   Because all of these input-state estimators can be incorporated 

into the same unifying MMSE framework, theoretical relationship among these three estimators are derived in this 

paper to provide unifying and comparative insights. Note that for all three estimators, the dynamics of the input is 

assumed to be unknown, i.e. no state space model of the input is available as prior knowledge. In this case, the AKF 
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assumes a random walk model of the unknown input; the FIC estimator treats the input as white Gaussian noise with 

a predefined input covariance Σ𝑢; and the WLS estimator is proved here to be equivalent as the FIC estimator when 

the input covariance of the FIC estimator approaches infinity, i.e. Σ𝑢 = Σ∞. Numerical examples of white noise input 

and sinusoidal input are provided to validate the proposed FIC estimator in comparison to AKF and WLS estimator. 

Detailed discussion on the choice of estimator covariances is also included by utilizing the statistical property of the 

input as prior knowledge. Furthermore, experimental validation based on a full-scale concrete frame using 

acceleration measurements is presented. Model order of the full-scale structure is reduced based on modal 

decomposition. Effect of sensor instrumentation on input estimation using the reduced-order model is also 

investigated. 

The rest of the paper is organized as follows. Section 2 introduces the problem of simultaneous input-state 

estimation with assumptions made in the paper and lemmas used in the derivations in the following section. In Section 

3, we first present the basic unifying MMSE framework by augmenting the unknown input to the state vector in 

measurement update but keeping the estimation of input and state separate. Next, time update of input and state is 

derived based on the random walk input model and the white noise input model. Finally, proof is provided to show 

that when Σ𝑢 of the FIC estimator approaches infinity and the feedthrough matrix 𝐷 has full-column rank, the WLS 

estimator can be obtained. Section 4 provides numerical examples of a 2-story shear structure excited by white noise 

input and sinusoidal input, respectively. Given acceleration measurements, comparison of the FIC, AKF and WLS 

estimators is provided. Section 0 validates the proposed FIC estimator and compares all estimator performance on a 

full-scale concrete frame structure using both simulated and experimental acceleration measurements.  

2. Problem formulation 

Consider the following discrete-time stochastic linear system with direct feedthrough of input: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +𝑤𝑘 (1) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘 (2) 

where 𝑥𝑘 ∈ ℝ
𝑛 is the state at time step 𝑘, 𝑢𝑘 ∈ ℝ

𝑛𝑢 is the unknown input, 𝑤𝑘 ∈ ℝ
𝑛 is the process noise or 

disturbance, 𝑦𝑘 ∈ ℝ
𝑚 is the measurement output, and 𝑣𝑘 ∈ ℝ

𝑚 is the measurement noise. The unknown input 𝑢𝑘 is 
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assumed to be a random variable at each time step with unknown dynamics. To account for the unknown dynamics, 

the first approach, proposed in [10], assumes a random walk model of the unknown input with white Gaussian process 

noise 𝜉𝑘~ 𝒩(0, Σ𝜉𝑘), i.e. 𝑢𝑘+1 = 𝑢𝑘 + 𝜉𝑘, where 𝜉𝑘 is independent from 𝑥0, 𝑢𝑙, 𝑣𝑙 and 𝑤𝑙 for all 𝑘 and 𝑙. The 

covariance of 𝜉𝑘 is assumed to be time invariant, i.e. Σ𝜉𝑘 = Σ𝜉. The second approach assumes the input has white 

Gaussian distribution with a predefined finite input covariance Σ𝑢 to utilize any prior knowledge related to the input. 

The third approach extends the finite input covariance to be infinite, i.e. Σ𝑢 = Σ∞, when assuming the input is highly 

uncertain.  

The additional assumptions are: (1) the system is observable, i.e. (𝐴, 𝐶) is observable; as a result, the rank of the 

observability matrix 𝒪 = [𝐶𝑇 (𝐶𝐴)𝑇 ⋯ (𝐶𝐴𝑛−1)𝑇]𝑇 equals the number of states 𝑛; (2) 𝑣𝑘  ~ 𝒩(0, Σ𝑣) and 

𝑤𝑘  ~ 𝒩(0, Σ𝑤) are white Gaussian noise such that Σ𝑣 and Σ𝑤 are diagonal matrices and Σ𝑣 ≻ 0 and Σ𝑤 ≽ 0; (3) 𝑣𝑘 

and 𝑤𝑙 are independent for all 𝑘 and 𝑙; (4) initial state is random 𝑥0 ~ 𝒩(μ0, Σ0) and independent from 𝑣𝑘 and 𝑤𝑙 

for all 𝑘 and 𝑙; (5) unknown input 𝑢𝑘
seq

 is Gaussian and independent from 𝑥0, 𝑣𝑙 and 𝑤𝑙 for all 𝑘 and 𝑙.  

The following notations are used here: the minimum-mean-square-error (MMSE) estimate of 𝑥𝑘 given cumulative 

sequential measurements 𝑦𝑙
seq

≜ [𝑦0
𝑇 𝑦1

𝑇 ⋯ 𝑦𝑙
𝑇]𝑇 is denoted as 𝑥𝑘|𝑙 ≜ 𝔼(𝑥𝑘|𝑦𝑙

seq
); the conditional covariance 

of 𝑥𝑘 given 𝑦𝑙
seq

 is Σ𝑥𝑘|𝑙 ≜ cov(𝑥𝑘|𝑦𝑙
seq
); the MMSE of 𝑢𝑘 is 𝑢̂𝑘|𝑙 ≜ 𝔼(𝑢𝑘|𝑦𝑙

seq
) with conditional covariance 

Σ𝑢𝑘|𝑙 ≜ cov(𝑢𝑘|𝑦𝑙
seq
). The conditional cross-covariance between the state and input is denoted as Σ𝑥𝑘𝑢𝑘|𝑙 ≜

cov(𝑥𝑘 , 𝑢𝑘|𝑦𝑙
seq
), and the conditional cross-covariance between the state-input vector {

𝑥𝑘
𝑢𝑘
} and measurement 𝑦𝑘 is 

denoted as Σ
{
𝑥𝑘
𝑢𝑘
}𝑦𝑘|𝑙

≜ cov ({
𝑥𝑘
𝑢𝑘
} , 𝑦𝑘|𝑦𝑙

seq
). 

Four lemmas are provided here to assist the derivation in Section 3. Since the first three lemmas are standard, 

they are provided without proof. 

Lemma 1 (matrix push through identity) Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐼𝑚 is the identity matrix with dimension 

𝑚 ×𝑚 and both (𝐼𝑛 + 𝐵𝐴) and (𝐼𝑚 + 𝐴𝐵) are invertible. As a result, 

𝐴(𝐼𝑛 + 𝐵𝐴)
−1 = (𝐼𝑚 + 𝐴𝐵)

−1𝐴 (3) 
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Lemma 2 (Sherman-Morrison-Woodbury formula) Let 𝐴 ∈ ℝ𝑚×𝑚, 𝐵 ∈ ℝ𝑚×𝑛, 𝐶 ∈ ℝ𝑛×𝑛, 𝐷 ∈ ℝ𝑛×𝑚. If 𝐴, 𝐶, 

𝐴 + 𝐵𝐶𝐷, and 𝐶−1 + 𝐷𝐴−1𝐵 are nonsingular,  

(𝐴 + 𝐵𝐶𝐷)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1 (4a) 

= 𝐴−1(𝐼𝑚 −𝐵(𝐶
−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1) (4b) 

Lemma 3 Suppose 𝑥 ∈ ℝ𝑛 and 𝑣 ∈ ℝ𝑚 are independent random vectors. We would like to estimate 𝑥 based on 

a linear measurement 𝑦 = 𝐴𝑥 + 𝑣, where 𝐴 ∈ ℝ𝑚×𝑛 is a constant matrix. As a result, we have 𝔼(𝑦) = 𝐴𝔼(𝑥) +

𝔼(𝑣), Σ𝑥𝑦 = Σ𝑥𝐴
𝑇 and Σ𝑦 = 𝐴Σ𝑥𝐴

𝑇 + Σ𝑣. If 𝑥, 𝑣 are Gaussian, i.e. 𝑥 ~ 𝒩(𝜇𝑥 , Σ𝑥), 𝑣 ~ 𝒩(𝜇𝑣 , Σ𝑣), the MMSE 

estimate of 𝑥 given 𝑦 and the conditional estimation error covariance Σ𝑥|𝑦 can be expressed as 

𝑥 = 𝔼(𝑥|𝑦) = 𝔼(𝑥) + Σ𝑥𝑦Σ𝑦
−1( 𝑦 − 𝔼(𝑦)) (5) 

Σ𝑥|𝑦 ≜ cov(𝑥|𝑦) = Σ𝑥 − Σ𝑥𝑦Σ𝑦
−1Σ𝑦𝑥 (6) 

Note that 𝑥 and 𝑦 are also jointly Gaussian.  

Lemma 4 For the system given by Eq. (1) and (2) with the assumptions made in Section 2, 𝑥𝑘, 𝑢𝑘, and 𝑦𝑘
seq

 are 

jointly Gaussian. In addition, given 𝑦𝑘−1
seq

, vectors 𝑥𝑘, 𝑢𝑘, and 𝑦𝑘 are individually and jointly Gaussian. 

Proof. Based on (1) and (2), we can derive 

𝑥𝑘 = 𝐴
𝑘𝑥0 +𝐻𝑢𝑘𝑢𝑘−1

seq
+ 𝐻𝑤𝑘𝑤𝑘−1

seq
 (7) 

𝑦𝑘
seq

= 𝒪𝑘𝑥0 + 𝑃𝑢𝑘𝑢𝑘
seq

+ 𝑃𝑤𝑘𝑤𝑘−1
seq

+ 𝑣𝑘
seq

 (8) 

where 𝐻𝑢𝑘 = [𝐴
𝑘−1𝐵 ⋯ 𝐴𝐵 𝐵], 𝐻𝑤𝑘 = [𝐴

𝑘−1 ⋯ 𝐴 𝐼], 𝒪𝑘 = [𝐶𝑇 (𝐶𝐴)𝑇 ⋯ (𝐶𝐴𝑘)
𝑇
]
𝑇

, 𝑃𝑢𝑘 =

[

𝐷 0 ⋯ 0
𝐶𝐵 ⋱ ⋯ ⋮
⋮ ⋱ 𝐷 0

𝐶𝐴𝑘−1𝐵 ⋯ 𝐶𝐵 𝐷

], 𝑃𝑤𝑘 = [

0 0 0
𝐶 ⋱ ⋮
⋮ ⋱ 0

𝐶𝐴𝑘−1 ⋯ 𝐶

]. 

Because 𝑥0, 𝑢𝑘
seq

, 𝑤𝑘−1
seq

 and 𝑣𝑘
seq

 are Gaussian and independent from each other, they are jointly Gaussian. Since 

𝑥𝑘, 𝑢𝑘, and 𝑦𝑘
seq

 can be expressed as a linear transformation of 𝑥0, 𝑢𝑘
seq

, 𝑤𝑘−1
seq

 and 𝑣𝑘
seq

 with full row-rank as shown 

in Eq. (9),  𝑥𝑘, 𝑢𝑘, and 𝑦𝑘
seq

 are also jointly Gaussian.  
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{

𝑥𝑘
𝑢𝑘
𝑦𝑘
seq
} = [

𝐴𝑘 𝐻̌𝑢𝑘 𝐻𝑤𝑘 0

0 𝐼𝑛𝑢 0 0

𝒪𝑘 𝑃𝑢𝑘 𝑃𝑤𝑘 𝐼

]

{
 
 

 
 
𝑥0
𝑢𝑘
seq

𝑤𝑘−1
seq

𝑣𝑘
seq

}
 
 

 
 

 (9) 

where 𝐻̌𝑢𝑘 = [𝐻𝑢𝑘 0] and 𝐼𝑛𝑢 = [0 𝐼𝑛𝑢]. Because conditional distributions of a Gaussian random vector are 

Gaussian, given 𝑦𝑘−1
seq

, vectors 𝑥𝑘, 𝑢𝑘, and 𝑦𝑘 are both individually and jointly Gaussian.  ∎ 

In the following section, a recursive MMSE estimator for simultaneous input-state estimation is derived assuming 

a random walk model, a white noise model with finite input covariance, and a white noise model with infinite input 

covariance, respectively. 

3. Simultaneous input-state estimation 

Given prior estimates of input and state at time step 𝑘, i.e. 𝑥𝑘|𝑘−1, Σ𝑥𝑘|𝑘−1, 𝑢̂𝑘|𝑘−1, Σ𝑢𝑘|𝑘−1 and Σ𝑥𝑘𝑢𝑘|𝑘−1, the state 

𝑥𝑘 and input 𝑢𝑘 at time step 𝑘 given measurements 𝑦𝑘
seq

 are simultaneously estimated based on a unifying MMSE 

framework. 

3.1. Measurement update of input and state 

Equation (2) can be rewritten in the following form by combining the state 𝑥𝑘 and input 𝑢𝑘 as a vector 

𝑦𝑘 = [𝐶 𝐷] {
𝑥𝑘
𝑢𝑘
} + 𝑣𝑘 (10) 

Considering the independence of measurement noise 𝑣𝑘 from past measurement sequence 𝑦𝑘−1
seq

, Eq. (10) is 

conditioned on 𝑦𝑘−1
seq

 and the corresponding conditional expectation can be written as 

𝔼(𝑦𝑘|𝑦𝑘−1
seq
) = [𝐶 𝐷]𝔼 ({

𝑥𝑘
𝑢𝑘
} |𝑦𝑘−1

seq
) + 𝔼(𝑣𝑘) = 𝐶𝑥𝑘|𝑘−1 + 𝐷𝑢̂𝑘|𝑘−1 (11) 

Applying the affine transformation in Lemma 3 to Eq. (11), given 𝑦𝑘−1
seq

, the conditional cross-covariance between 

{
𝑥𝑘
𝑢𝑘
} and 𝑦𝑘 and the covariance of 𝑦𝑘 are 

Σ
{
𝑥𝑘
𝑢𝑘
}𝑦𝑘|𝑘−1

= [
Σ𝑥𝑘|𝑘−1 Σ𝑥𝑘𝑢𝑘|𝑘−1
Σ𝑢𝑘𝑥𝑘|𝑘−1 Σ𝑢𝑘|𝑘−1

] [𝐶
𝑇

𝐷𝑇
] (12) 
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Σ𝑦𝑘|𝑘−1 = [𝐶 𝐷] [
Σ𝑥𝑘|𝑘−1 Σ𝑥𝑘𝑢𝑘|𝑘−1
Σ𝑢𝑘𝑥𝑘|𝑘−1 Σ𝑢𝑘|𝑘−1

] [𝐶
𝑇

𝐷𝑇
] + Σ𝑣 (13) 

Recall that measurement noise 𝑣𝑘 is independent of 𝑥𝑘, 𝑢𝑘 and 𝑦𝑘−1
seq

, thus Σ𝑥𝑘𝑣𝑘|𝑘−1 and Σ𝑢𝑘𝑣𝑘|𝑘−1 are zero matrices. 

Expanding Eq. (12) and Eq. (13) gives the following expressions 

Σ𝑥𝑘𝑦𝑘|𝑘−1 = Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇 (14) 

Σ𝑢𝑘𝑦𝑘|𝑘−1 = Σ𝑢𝑘|𝑘−1𝐷
𝑇 + Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶

𝑇 (15) 

Σ𝑦𝑘|𝑘−1 = 𝐶Σ𝑥𝑘|𝑘−1𝐶
𝑇 + 𝐷Σ𝑢𝑘|𝑘−1𝐷

𝑇 + Σ𝑣 + 𝐷Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶
𝑇 + 𝐶Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇 (16) 

Recall that given 𝑦𝑘−1
seq

, vectors 𝑥𝑘, 𝑢𝑘, and 𝑦𝑘 are jointly Gaussian from Lemma 4.  Based on Lemma 3 the MMSE 

estimate of 𝑥𝑘 , 𝑢𝑘 given 𝑦𝑘 and 𝑦𝑘−1
seq

 are shown in the following 

{
𝑥𝑘|𝑘
𝑢̂𝑘|𝑘

} ≜ 𝔼({
𝑥𝑘
𝑢𝑘
} |𝑦𝑘

seq
) = 𝔼({

𝑥𝑘
𝑢𝑘
} |𝑦𝑘−1

seq
) + Σ

{
𝑥𝑘
𝑢𝑘
}𝑦𝑘|𝑘−1

Σ𝑦𝑘|𝑘−1
−1 (𝑦𝑘 − 𝔼(𝑦𝑘|𝑦𝑘−1

seq
)) 

= {
𝑥𝑘|𝑘−1
𝑢̂𝑘|𝑘−1

} + [
Σ𝑥𝑘|𝑘−1 Σ𝑥𝑘𝑢𝑘|𝑘−1
Σ𝑢𝑘𝑥𝑘|𝑘−1 Σ𝑢𝑘|𝑘−1

] [𝐶
𝑇

𝐷𝑇
] Σ𝑦𝑘|𝑘−1

−1 (𝑦𝑘 − 𝔼(𝑦𝑘|𝑦𝑘−1
seq
)) 

(17) 

The last step holds by substituting Σ
{
𝑥𝑘
𝑢𝑘
}𝑦𝑘|𝑘−1

 from Eq. (12). Substitute Eq. (11), (14) ~ (16) into Eq. (17), we have 

{
𝑥𝑘|𝑘
𝑢̂𝑘|𝑘

} = {
𝑥𝑘|𝑘−1 + 𝐿𝑥𝑘(𝑦𝑘 − 𝐶𝑥𝑘|𝑘−1 − 𝐷𝑢̂𝑘|𝑘−1)

𝑢̂𝑘|𝑘−1 + 𝐿𝑢𝑘(𝑦𝑘 − 𝐶𝑥𝑘|𝑘−1 − 𝐷𝑢̂𝑘|𝑘−1)
} (18) 

where the estimation gains are defined as 

𝐿𝑥𝑘 ≜ Σ𝑥𝑘𝑦𝑘|𝑘−1Σ𝑦𝑘|𝑘−1
−1  = Σ𝑥𝑘|𝑘−1𝐶

𝑇Σ𝑦𝑘|𝑘−1
−1 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇Σ𝑦𝑘|𝑘−1
−1  (19) 

𝐿𝑢𝑘 ≜ Σ𝑢𝑘𝑦𝑘|𝑘−1Σ𝑦𝑘|𝑘−1
−1  = Σ𝑢𝑘|𝑘−1𝐷

𝑇Σ𝑦𝑘|𝑘−1
−1 + Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶

𝑇Σ𝑦𝑘|𝑘−1
−1  (20) 

Note that Σ𝑥𝑘𝑦𝑘|𝑘−1 and Σ𝑢𝑘𝑦𝑘|𝑘−1 are given by Eq. (14) and (15). Based on Eq. (6) in Lemma 3, the conditional 

covariance given 𝑦𝑘
seq

 can be obtained as 
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cov ({
𝑥𝑘
𝑢𝑘
} |𝑦𝑘

seq
) ≜ [

Σ𝑥𝑘|𝑘 Σ𝑥𝑘𝑢𝑘|𝑘
Σ𝑢𝑘𝑥𝑘|𝑘 Σ𝑢𝑘|𝑘

] 

= [
Σ𝑥𝑘|𝑘−1 Σ𝑥𝑘𝑢𝑘|𝑘−1
Σ𝑢𝑘𝑥𝑘|𝑘−1 Σ𝑢𝑘|𝑘−1

] − [
Σ𝑥𝑘𝑦𝑘|𝑘−1
Σ𝑢𝑘𝑦𝑘|𝑘−1

] Σ𝑦𝑘|𝑘−1
−1 [Σ𝑦𝑘𝑥𝑘|𝑘−1 Σ𝑦𝑘𝑢𝑘|𝑘−1] 

(21) 

Expand Eq. (21), simplify the equations with estimation gains and substitute Σ𝑥𝑘𝑦𝑘|𝑘−1 and Σ𝑢𝑘𝑦𝑘|𝑘−1 with Eq. (14) 

and (15) 

Σ𝑥𝑘|𝑘 = Σ𝑥𝑘|𝑘−1 − Σ𝑥𝑘𝑦𝑘|𝑘−1Σ𝑦𝑘|𝑘−1
−1 Σ𝑥𝑘𝑦𝑘|𝑘−1

𝑇 = Σ𝑥𝑘|𝑘−1 − 𝐿𝑥𝑘 (Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇)
𝑇
 (22) 

Σ𝑢𝑘|𝑘 = Σ𝑢𝑘|𝑘−1 − Σ𝑢𝑘𝑦𝑘|𝑘−1Σ𝑦𝑘|𝑘−1
−1 Σ𝑢𝑘𝑦𝑘|𝑘−1

𝑇 = Σ𝑢𝑘|𝑘−1 − 𝐿𝑢𝑘 (Σ𝑢𝑘|𝑘−1𝐷
𝑇 + Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶

𝑇)
𝑇

 (23) 

Σ𝑥𝑘𝑢𝑘|𝑘 = Σ𝑥𝑘𝑢𝑘|𝑘−1 − Σ𝑥𝑘𝑦𝑘|𝑘−1Σ𝑦𝑘|𝑘−1
−1 Σ𝑢𝑘𝑦𝑘|𝑘−1

𝑇 = Σ𝑥𝑘𝑢𝑘|𝑘−1 − (Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇)𝐿𝑢𝑘
𝑇  (24) 

3.2. Time update of state and input 

Time update of state is straightforward using linear transformation. Based on Eq. (1), the state at time step 𝑘 can 

be re-written in the following form 

𝑥𝑘+1 = [𝐴 𝐵 𝐼] {

𝑥𝑘
𝑢𝑘
𝑤𝑘
} (25) 

Because the linear transformation in Eq. (25) has full row-rank, the estimate of 𝑥𝑘+1 given 𝑦𝑘
seq

 can thus be written 

as 

𝑥𝑘+1|𝑘 = 𝔼(𝑥𝑘+1|𝑦𝑘
seq
) = [𝐴 𝐵 𝐼]𝔼({

𝑥𝑘
𝑢𝑘
𝑤𝑘
} |𝑦𝑘

seq
) = 𝐴𝑥𝑘|𝑘 + 𝐵𝑢̂𝑘|𝑘 (26) 

Here 𝔼(𝑤𝑘|𝑦𝑘
seq
) = 0 because process noise 𝑤𝑘 is independent from 𝑦𝑘

seq
 (Eq. (8)). The conditional covariance is 

given by 
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Σ𝑥𝑘+1|𝑘 ≜ cov(𝑥𝑘+1|𝑦𝑘
seq
) = [𝐴 𝐵 𝐼] [

Σ𝑥𝑘|𝑘 Σ𝑥𝑘𝑢𝑘|𝑘 0

Σ𝑢𝑘𝑥𝑘|𝑘 Σ𝑢𝑘|𝑘 0

0 0 Σ𝑤

] [
𝐴𝑇

𝐵𝑇

𝐼

] 

= [𝐴 𝐵] [
Σ𝑥𝑘|𝑘 Σ𝑥𝑘𝑢𝑘|𝑘
Σ𝑢𝑘𝑥𝑘|𝑘 Σ𝑢𝑘|𝑘

] [𝐴
𝑇

𝐵𝑇
] + Σ𝑤 

(27) 

Note here because the process noise 𝑤𝑘 is independent from 𝑥𝑘, 𝑢𝑘 and 𝑦𝑘
seq

, the cross-covariance of state-noise and 

input-noise are zero, i.e. Σ𝑥𝑘𝑤𝑘|𝑘 = 0 and Σ𝑢𝑘𝑤𝑘|𝑘 = 0. In addition, cov(𝑤𝑘|𝑦𝑘
seq
) = cov(𝑤𝑘) = Σ𝑤. 

In terms of time update of input, a state space model of the input can be used to propagate the input over time. 

When a Gaussian random walk model is assumed as 𝑢𝑘+1 = 𝑢𝑘 + 𝜉𝑘 with 𝜉𝑘~ 𝒩(0, Σ𝜉), the conditional 

expectation and covariance are 

𝑢̂𝑘+1|𝑘 ≜ 𝔼(𝑢𝑘+1|𝑦𝑘
seq
) = 𝔼(𝑢𝑘 + 𝜉𝑘|𝑦𝑘

seq
) = 𝑢̂𝑘|𝑘 (28) 

Σ𝑢𝑘+1|𝑘 ≜ cov(𝑢𝑘+1|𝑦𝑘
seq
) = cov(𝑢𝑘 + 𝜉𝑘|𝑦𝑘

seq
) = Σ𝑢𝑘|𝑘 + Σ𝜉 (29) 

Σ𝑥𝑘+1𝑢𝑘+1|𝑘 ≜ cov(𝑥𝑘+1, 𝑢𝑘+1|𝑦𝑘
seq
) = cov(𝐴𝑥𝑘 + 𝐵𝑢𝑘 +𝑤𝑘, 𝑢𝑘 + 𝜉𝑘|𝑦𝑘

seq
) = 𝐴Σ𝑥𝑘𝑢𝑘|𝑘 +𝐵Σ𝑢𝑘|𝑘 (30) 

This approach is the same as augmenting the state vector with the unknown input; the resulting augmented state can 

then be estimated using a regular Kalman filter [10]. Hereinafter, this estimator with a Gaussian random walk input 

model is referred to as the augmented Kalman filter (AKF). The resulting augmented system is found to suffer from 

un-observability issue when only acceleration measurements are available [10]. To resolve the issue, 𝑢𝑘 can be 

assumed to be zero-mean white Gaussian with 𝑢𝑘~𝒩(0, Σ𝑢). With this assumption, 𝑢𝑘 is independent from 𝑥0, 

𝑢𝑘−1
seq

, 𝑤𝑘−1
seq

 and 𝑣𝑘−1
seq

. Therefore, based on Eq. (7) and Eq. (8), 𝑢𝑘+1 is independent from 𝑥𝑘+1 and 𝑦𝑘
seq

. As a result, 

𝑢̂𝑘+1|𝑘 ≜ 𝔼(𝑢𝑘+1|𝑦𝑘
seq
) = 𝔼(𝑢𝑘+1) = 0 (31) 

Σ𝑢𝑘+1|𝑘 ≜ cov(𝑢𝑘+1|𝑦𝑘
seq
) = Σ𝑢 (32) 

Σ𝑥𝑘+1𝑢𝑘+1|𝑘 ≜ cov(𝑥𝑘+1, 𝑢𝑘+1|𝑦𝑘
seq
) = Σ𝑢𝑘+1𝑥𝑘+1|𝑘

𝑇 = 0 (33) 

Hereinafter, this estimator with a finite input covariance Σ𝑢 is referred to as the finite input covariance (FIC) 

estimator. Up to here, simultaneous estimation of the state and input given 𝑦𝑘
seq

 have been derived based on the 
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unifying MMSE framework, and the difference between AKF and FIC is shown to be in the time update stage. Table 

1 summarizes the AKF and the proposed FIC using the time updated priors given by Eq. (31) ~ (33).  

Table 1 Input-state estimation using the augmented Kalman filter and finite input covariance estimator 

Augmented Kalman filter (AKF) Finite input covariance (FIC) estimator 

Initialization:   

𝑥̂0|−1 = μ𝑥0 , Σ𝑥0|−1 = Σ𝑥0 ,𝑢̂0|−1 = 𝑢̂0, Σ𝑢0|−1 = Σ𝑢0 , Σ𝑥0𝑢0|−1 = Σ𝑥0𝑢0 𝑥̂0|−1 = μ𝑥0 ,   Σ𝑥0|−1 = Σ𝑥0  

for 𝑘 = 0, 1, … , 𝑛 

Measurement update of input: 

Σ𝑦𝑘|𝑘−1 = 𝐶Σ𝑥𝑘|𝑘−1𝐶
𝑇 + 𝐷Σ𝑢𝑘|𝑘−1𝐷

𝑇 + Σ𝑣 

                +𝐷Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶
𝑇 + 𝐶Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇 
Rept. (16) Σ𝑦𝑘|𝑘−1 = 𝐶Σ𝑥𝑘|𝑘−1𝐶

𝑇 + 𝐷Σ𝑢𝐷
𝑇 + Σ𝑣  (34) 

𝐿𝑢𝑘 = (Σ𝑢𝑘|𝑘−1𝐷
𝑇 + Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶

𝑇) Σ𝑦𝑘|𝑘−1
−1  Rept. (20) 𝐿𝑢𝑘 = Σ𝑢𝐷

𝑇Σ𝑦𝑘|𝑘−1
−1                                       (35) 

𝑢̂𝑘|𝑘 = 𝑢̂𝑘|𝑘−1 + 𝐿𝑢𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1 − 𝐷𝑢̂𝑘|𝑘−1) Rept. (18) 𝑢̂𝑘|𝑘 = 𝐿𝑢𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1)                          (36) 

Σ𝑢𝑘|𝑘 = Σ𝑢𝑘|𝑘−1 − 𝐿𝑢𝑘 (Σ𝑢𝑘|𝑘−1𝐷
𝑇 + Σ𝑢𝑘𝑥𝑘|𝑘−1𝐶

𝑇)
𝑇

 Rept. (23) Σ𝑢𝑘|𝑘 = Σ𝑢 − 𝐿𝑢𝑘𝐷Σ𝑢                                   (37) 

Σ𝑥𝑘𝑢𝑘|𝑘 = Σ𝑥𝑘𝑢𝑘|𝑘−1 − (Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇) 𝐿𝑢𝑘
𝑇  Rept. (24) Σ𝑥𝑘𝑢𝑘|𝑘 = −Σ𝑥𝑘|𝑘−1𝐶

𝑇𝐿𝑢𝑘
𝑇                              (38) 

Measurement update of state: 

𝐿𝑥𝑘 = (Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇) Σ𝑦𝑘|𝑘−1
−1  Rept. (19) 𝐿𝑥𝑘 = Σ𝑥𝑘|𝑘−1𝐶

𝑇Σ𝑦𝑘|𝑘−1
−1                                 (39) 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐿𝑥𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1 − 𝐷𝑢̂𝑘|𝑘−1) Rept. (18) 𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐿𝑥𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1)            (40) 

Σ𝑥𝑘|𝑘 = Σ𝑥𝑘|𝑘−1 − 𝐿𝑥𝑘 (Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑥𝑘𝑢𝑘|𝑘−1𝐷

𝑇)
𝑇

 Rept. (22) Σ𝑥𝑘|𝑘 = Σ𝑥𝑘|𝑘−1 − 𝐿𝑥𝑘𝐶Σ𝑥𝑘|𝑘−1                       (41) 

Time update of state: 

𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢̂𝑘|𝑘 Rept. (26) 

Σ𝑥𝑘+1|𝑘 = [𝐴 𝐵] [
Σ𝑥𝑘|𝑘 Σ𝑥𝑘𝑢𝑘|𝑘
Σ𝑢𝑘𝑥𝑘|𝑘 Σ𝑢𝑘|𝑘

] [𝐴
𝑇

𝐵𝑇
] + Σ𝑤 Rept. (27) 

Time update of input: 

𝑢̂𝑘+1|𝑘 = 𝑢̂𝑘|𝑘 Rept. (28) 𝑢̂𝑘+1|𝑘 = 0 Rept. (31) 

Σ𝑢𝑘+1|𝑘 = Σ𝑢𝑘|𝑘 + Σ𝜉  Rept. (29) Σ𝑢𝑘+1|𝑘 = Σ𝑢 Rept. (32) 

Σ𝑥𝑘+1𝑢𝑘+1|𝑘 = 𝐴Σ𝑥𝑘𝑢𝑘|𝑘 + 𝐵Σ𝑢𝑘|𝑘 Rept. (30) Σ𝑥𝑘+1𝑢𝑘+1|𝑘 = 0 Rept. (33) 

end 

3.3. Measurement update with large and infinite input covariance 

Equation (34) may be ill-conditioned when the input covariance Σ𝑢 is much larger than the state estimation 

covariance and 𝐷Σ𝑢𝐷
𝑇 does not have full rank. To improve the conditioning of Eq. (34), define a symmetric positive 

definite matrix as: 

Σ𝑦̃𝑘|𝑘−1 ≜ 𝐶Σ𝑥𝑘|𝑘−1𝐶
𝑇 + Σ𝑣 (42) 

Based on the matrix push through identity in Lemma 1, input estimation gain 𝐿𝑢𝑘 from Eq. (35) can be modified as 
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𝐿𝑢𝑘 = Σ𝑢𝐷
𝑇 (Σ𝑦̃𝑘|𝑘−1 + 𝐷Σ𝑢𝐷

𝑇)
−1
= Σ𝑢𝐷

𝑇 (𝐼 + Σ𝑦̃𝑘|𝑘−1
−1 𝐷Σ𝑢𝐷

𝑇)
−1
Σ𝑦̃𝑘|𝑘−1
−1  

= (Σ𝑢
−1 + 𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 𝐷)
−1
𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1  (43) 

The corresponding input estimation error covariance in Eq. (37) can be modified using Eq. (4a) in Lemma 2 as 

Σ𝑢𝑘|𝑘 = Σ𝑢 − Σ𝑢𝐷
𝑇Σ𝑦𝑘|𝑘−1

−1 𝐷Σ𝑢 = (Σ𝑢
−1 + 𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 𝐷)
−1

 (44) 

To improve the ill-conditioning of Σ𝑦𝑘|𝑘−1 caused by the term 𝐷Σ𝑢𝐷
𝑇, the matrix inversion Σ𝑦𝑘|𝑘−1

−1  in Eq. (39) can 

be rewritten as 

Σ𝑦𝑘|𝑘−1
−1 = (Σ𝑦̃𝑘|𝑘−1 +𝐷Σ𝑢𝐷

𝑇)
−1
= Σ𝑦̃𝑘|𝑘−1

−1 (𝐼 − 𝐷 (Σ𝑢
−1 + 𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 𝐷)
−1
𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 ) (45) 

Therefore, an equivalent set of equations given by Eq. (43), (44) and (45) can be used to modify Eq. (35), (37) and 

(39) to improve the condition of Eq. (34) in the FIC estimator. 

Furthermore, if the unknown input is highly uncertain such that no prior knowledge can be used to estimate 𝑢𝑘, 

Σ𝑢𝑘|𝑘−1 = Σ𝑢 can be replaced with Σ∞, which denotes a diagonal matrix with diagonal entries being infinity. When 

the number of unknown inputs is smaller than the number of measurements, i.e. 𝐷 has full column rank (𝑛𝑢 ≤ 𝑚 

and rank(𝐷) = 𝑛𝑢), Σ𝑢
−1 = Σ∞

−1 = 0 in Eq. (43) ~ (45) can be eliminated, resulting in Eq. (46) ~ (48) as follows. 

𝐿𝑢𝑘 = (𝐷
𝑇Σ𝑦̃𝑘|𝑘−1

−1 𝐷)
−1
𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 = Σ𝑢𝑘|𝑘𝐷
𝑇Σ𝑦̃𝑘|𝑘−1

−1  (46) 

Σ𝑢𝑘|𝑘 = (𝐷
𝑇Σ𝑦̃𝑘|𝑘−1

−1 𝐷)
−1

 (47) 

Σ𝑦𝑘|𝑘−1
−1 = Σ𝑦̃𝑘|𝑘−1

−1 (𝐼 − 𝐷 (𝐷𝑇Σ𝑦̃𝑘|𝑘−1
−1 𝐷)

−1
𝐷𝑇Σ𝑦̃𝑘|𝑘−1

−1 ) = Σ𝑦̃𝑘|𝑘−1
−1 (𝐼 − 𝐷𝐿𝑢𝑘) (48) 

As a result of (48), the state estimation gain in (39) can be rewritten as  

𝐿𝑥𝑘 = Σ𝑥𝑘|𝑘−1𝐶
𝑇Σ𝑦𝑘|𝑘−1

−1 = Σ𝑥𝑘|𝑘−1𝐶
𝑇Σ𝑦̃𝑘|𝑘−1

−1 (𝐼 − 𝐷𝐿𝑢𝑘) (49) 

To summarize, when assuming Σ𝑢 = Σ∞ and 𝐷 has full column rank, Eq. (34), (35), (37) and (39) in Table 1 can be 

replaced by Eq. (42), (46), (47) and (49). Time update of the state is the same as Eq. (26) and (27), and time update 

of input remains the same as in Eq. (32) and (33) for the FIC estimator .  
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Theorem When the input covariance Σ𝑢 of the FIC estimator approaches infinity (Σ∞) and the feedthrough matrix 

𝐷 has full column rank, the FIC estimator with 𝐿𝑢𝑘, Σ𝑢𝑘|𝑘 and 𝐿𝑥𝑘 given by Eq. (46), (47) and (49) is equivalent to 

the WLS estimator proposed by Gillijns and De Moor in [6]. 

Proof. In comparison to the notations in [6], the symmetric positive definite matrix Σ𝑦̃𝑘|𝑘−1 defined here is 

denoted as 𝑅̃𝑘 in [6]; the input estimation gain 𝐿𝑢𝑘 is denoted as 𝑀𝑘; the state estimation gain 𝐿𝑥𝑘 is denoted as 𝐿𝑘; 

and Σ𝑥𝑘|𝑘−1𝐶
𝑇Σ𝑦̃𝑘|𝑘−1

−1
 is denoted as 𝐾𝑘. Therefore, Eq. (42), (46), (36) and (47) here are equivalent to the unknown 

input estimation step in [6]. Substituting 𝐿𝑥𝑘 from Eq. (49) into Eq. (40) and (41), the state measurement update step 

in [6] can be obtained. Finally, Eq. (26) and (27) are equivalent to the time update step in [6]. ∎ 

Hereinafter, the FIC estimator with Σ𝑢 = Σ∞ is referred to as the weighted least squares (WLS) estimator. Thus 

far, the relationship among all three estimators, i.e. AKF, FIC and WLS, has been demonstrated based on the unifying 

MMSE framework. In theory, neither the FIC nor the AKF assumes the feedthrough matrix 𝐷 has full column rank. 

However, to estimate all the unknown inputs accurately, in practice full-column rank of 𝐷 is needed and the 

magnitude of 𝐷𝑢𝑘 should be relatively large compared to the measurement noise 𝑣𝑘.  

4. Numerical example 

To compare the performance of the estimators, a state space dynamical model is formulated based on the 

following equations of motion with 𝑛DOF degrees-of-freedom (DOFs): 

𝑀𝑞̈(𝑡) + 𝐶damp𝑞̇(𝑡) + 𝐾𝑞(𝑡) = Γ𝑢𝑢(𝑡) (50) 

where 𝑀, 𝐾, 𝐶damp ∈ ℝ
𝑛DOF×𝑛DOF are the mass, stiffness and damping matrices; 𝑞(𝑡), 𝑞̇(𝑡) and 𝑞̈(𝑡) ∈ ℝ𝑛DOF are 

displacement, velocity and acceleration vectors at time t; Γ𝑢 ∈ ℝ
𝑛DOF×𝑛𝑢 is the input location matrix, with ones at 

the input DOFs and zeros elsewhere; and 𝑢(𝑡) ∈ ℝ𝑛𝑢 is the force input. To reformulate Eq. (50) in state space form, 

define the state vector as 𝑥 ≜ {
𝑞
𝑞̇} with a length of 𝑛 = 2𝑛DOF. As a result, the equations of motion can be 

reformulated in state space as follows, together with corresponding measurement equation for 𝑚 number of 

acceleration measurements. 
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𝑥̇ = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶damp
] 𝑥 + [

0
𝑀−1Γ𝑢

] 𝑢 ≜ 𝐴𝑐𝑥 + 𝐵𝑐𝑢 (51) 

𝑦 = Γ𝑦[−𝑀
−1𝐾 −𝑀−1𝐶damp]𝑥 + Γ𝑦𝑀

−1Γ𝑢𝑢 + 𝑣 ≜ 𝐶𝑐𝑥 + 𝐷𝑐𝑢 + 𝑣 (52) 

Here 𝑦 ∈ ℝ𝑚 represents the acceleration measurement; Γ𝑦 ∈ ℝ
𝑚×𝑛DOF  is the output location matrix; 𝑣 ∈ ℝ𝑚 is the 

measurement noise; 𝐴𝑐, 𝐵𝑐, 𝐶𝑐 and 𝐷𝑐 represent the system matrix, input matrix, output matrix and feedthrough 

matrix of the continuous state space model. In this numerical example, the three estimators shown in Section 3 are 

validated using a two-story shear structure, i.e. 𝑛DOF = 2. The mass and stiffness values are provided in Figure 1 

and the resonance frequencies of the structure are 1.67 Hz and 4.5 Hz. A modal damping ratio of 2% is assumed for 

both modes. The excitation 𝑢(𝑡) is applied at the 1st DOF, i.e. at mass m1.  

 

Figure 1 Two-story structural example 

The measurement 𝑦 contains the simulated acceleration response of both DOFs. As a result, the mass, stiffness, 

damping, input location and output location matrices of this example are 

𝑀 = [
5 0
0 5

],           𝐾 = [
2977 −1576
−1576 1576

],        𝐶damp = [
4.6017 −1.625
−1.625 3.1571

],           Γ𝑢 = [
1
0
],           Γ𝑦 = [

1 0
0 1

]. 

Note that in this structural example, the continuous feedthrough matrix 𝐷𝑐 = Γ𝑦𝑀
−1Γ𝑢 has full column rank because 

the measured DOFs contain the input DOF. In addition, although the input excitation in this example is only applied 

at the 1st DOF, the estimators can simultaneously estimate inputs at multiple locations if 𝐷𝑐 has full column rank. To 

implement the estimators in discrete time, the continuous-time system given by Eq. (51) and (52) is discretized using 

zero-order-hold with a time step of 0.005s. The resulting discrete state space matrices 𝐴, 𝐵, 𝐶 and 𝐷 are given as 

follows 

𝐴 = [

0.993 0.004 0.005 10−5

0.004 0.996 10−5 0.005
−2.96 1.565 0.988 0.006
1.565 −1.568 0.006 0.993

] , 𝐵 = [

2.49
0.003
995.2
2.12 

] × 10−6, 𝐶 = [
−595.4 315.2 −0.92 0.325
315.2 −315.2 0.325 −0.631

] , 𝐷 = [
0.2
0
]. 

Excitation
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To compare the estimator performance, two types of input excitations are considered here. The first type is a white 

Gaussian input excitation with a standard deviation of 10 N, i.e. 𝑢𝑘~ 𝒩(0, 10
2). The second type is a 3 Hz periodic 

sinusoidal input with a magnitude of 10 N. Note that the sinusoidal input is chosen on purpose such that the white 

Gaussian noise assumption of the unknown input is violated. The simulated measurements are contaminated by 

measurement noise with a standard deviation of σ𝑣 = 10
−3 m/s2 and sampled at 200 Hz. For easier comparison of 

the input estimators, σ𝑣 values available to the estimators are assumed to be the same as the one used in the simulated 

measurements. The initial value μ𝑥0 and the diagonal entries of Σ𝑥0 are set as zero for all estimators, assuming the 

initial condition of the structure is known. Moreover, for the AKF, 𝑢̂0, Σ𝑢0 and Σ𝑥0𝑢0 are set as zero.  

4.1. Effect of covariance knowledge on input estimation 

 In practice, the actual input covariance Σ𝑢 and process noise covariance Σ𝑤 are often unknown, while the 

measurement noise covariance Σ𝑣 can be approximated based on sensor noise level, as well as any uncertainty present 

in the measurement equation.  Knowledge of the covariances Σ𝑢 and Σ𝑤 by an estimator can have significant effect 

on the estimation performance. To study such effects, numerical simulations are performed first, where the actual/true 

values of these covariances are known. When generating time history data, the true input covariance and process 

noise covariance used in the dynamics simulation are denoted Σ𝑢,𝑠𝑖𝑚 and Σ𝑤,𝑠𝑖𝑚, respectively. During estimation, all 

three estimators (FIC, AKF and WLS) require a value of process noise covariance Σ𝑤; the value available to the 

estimator is thus denoted Σ𝑤,𝑒𝑠𝑡. The FIC estimator requires a value of the input covariance (see Table 1); the value 

available to the estimator is denoted Σ𝑢,𝑒𝑠𝑡. Similarly, operation of the AKF estimator requires the random walk 

covariance Σ𝜉 (also see Table 1); accordingly, the value is denoted Σ𝜉,𝑒𝑠𝑡. On the other hand, operation of the WLS 

estimation does not require any input covariance Σ𝑢, as shown in Eq. (46) ~ (48). In summary, the covariances for 

the estimator operation include Σ𝑢,𝑒𝑠𝑡 of the FIC estimator, Σ𝜉,𝑒𝑠𝑡 of the AKF, and Σ𝑤,𝑒𝑠𝑡 and Σ𝑣,𝑒𝑠𝑡 for all three 

estimators. Table 2 summarizes the data generation process and the estimator covariances during each trial run. 
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Table 2 Summary of data generation and estimator covariances 

Covariances Time history generation 
Estimation 

FIC AKF WLS 

Input 
(1) White noise Σ𝑢, 𝑠𝑖𝑚 = 100 N2 

(2) Sinusoidal input 

Σ𝑢, 𝑒𝑠𝑡  

(1 to 107 N2) 

Σ𝜉,𝑒𝑠𝑡 

(1 to 107 N2) 
- 

Initial state Static μ𝑥0 = 0,  Σ𝑥0 = 0 

Process noise Σ𝑤, 𝑠𝑖𝑚 = 0 or 10−10𝐼 Σ𝑤, 𝑒𝑠𝑡 = 0 

Measurement noise Σ𝑣, 𝑠𝑖𝑚 = 10−6 (m/s2)2 Σ𝑣, 𝑒𝑠𝑡 = 10
−6 (m/s2)2 

To study estimator covariance effects under white Gaussian excitation, 50 independent runs of dynamics 

simulation are performed using randomly generated 30 seconds of input 𝑢𝑘 (with Σ𝑢,𝑠𝑖𝑚 = 100N2) and measurement 

noise 𝑣𝑘. Using data from each trial run, the root mean square (RMS) error 𝑒𝑢 can be calculated based on the 

estimated input 𝑢̂𝑘 and the actual input 𝑢𝑘, defined as 𝑒𝑢 ≜ √
1

𝕂
∑ |𝑢𝑘 − 𝑢̂𝑘|

2𝕂
𝑘=1 , where 𝕂 is the total number of data 

points. Because all three estimators require process noise covariance Σ𝑤,𝑒𝑠𝑡, the same value is used when performing 

estimation by all estimators and for 50 trials. When performing estimation for each trial run, the WLS estimator is 

operated only once, because the estimator does not require knowledge of input covariance Σ𝑢,𝑒𝑠𝑡 or Σ𝜉,𝑒𝑠𝑡; the 

averaged RMS error among 50 trials is then obtained as 𝑒̅𝑢 =
1

𝑛𝑡𝑟𝑖𝑎𝑙
∑ 𝑒𝑢

(𝑖)𝑛𝑡𝑟𝑖𝑎𝑙
𝑖=1 . On the other hand, the FIC estimator 

is performed for different values of Σ𝑢,𝑒𝑠𝑡 ranging from 1 to 107 N2. At each value of Σ𝑢,𝑒𝑠𝑡, one estimation time 

history 𝑢̂𝑘 is generated and 𝑒𝑢 is calculated accordingly for one trial; among 50 trials the averaged RMS 𝑒̅𝑢 is 

obtained. Thus, the results provide the relationship between 𝑒̅𝑢 and Σ𝑢,𝑒𝑠𝑡. Likewise, the AKF estimator is performed 

for different values of Σ𝜉,𝑒𝑠𝑡 in the same range of 1 to 107 N2. After averaging among 50 trials, the relationship 

between 𝑒̅𝑢 and Σ𝜉,𝑒𝑠𝑡 can be obtained. When no process noise is added to the system in all 50 trials, i.e. Σ𝑤,𝑠𝑖𝑚 = 0, 

Figure 2(a) shows the change in 𝑒̅𝑢 as Σ𝑢,𝑒𝑠𝑡 of FIC and Σ𝜉,𝑒𝑠𝑡 of AKF vary with Σ𝑤,𝑒𝑠𝑡 = 0. The smallest RMS error 

is achieved by the FIC estimator when Σ𝑢,𝑒𝑠𝑡 is very close to the actual input covariance Σ𝑢,𝑠𝑖𝑚 = 100 N2. It is also 

observed that AKF is not sensitive to the change of Σ𝜉,𝑒𝑠𝑡 and has a similar averaged RMS error as the WLS estimator, 

resulting in the coinciding curves in Figure 2(a). Specifically, the averaged RMS from both AKF and WLS estimator 

is around 0.42 N, and the smallest averaged RMS achieved by FIC is around 0.25 N. In addition, the RMS error of 

the FIC estimator is smaller than both the AKF and WLS when Σ𝑢,𝑒𝑠𝑡 is in the range from 5 to 105 N2. As Σ𝑢,𝑒𝑠𝑡 
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becomes larger than 106 N2, the FIC estimator converges to the WLS estimator, which is consistent with the theorem 

in Section 3.  

To investigate the situation when process noise covariance is not exactly known, a small amount of process noise 

is randomly generated in each of the 50 trial runs, while the estimators assume no process noise is present and the 

system model is accurate. Figure 2(b) illustrates the averaged RMS errors of estimated input given each Σ𝑢,𝑒𝑠𝑡 and 

Σ𝜉,𝑒𝑠𝑡 when Σ𝑤,𝑠𝑖𝑚 = 10−10𝐼 and Σ𝑤,𝑒𝑠𝑡 = 0. For the AKF and WLS estimator, the averaged input RMS error 

increase significantly to around 1.90 N, while the FIC estimator is able to achieve a much smaller RMS error of 0.5 

N when Σ𝑢,𝑒𝑠𝑡 is chosen around 5 N2. The best choice of Σ𝑢,𝑒𝑠𝑡 here is smaller than Σ𝑢,𝑠𝑖𝑚 = 100 N2, when the 

Σ𝑤,𝑒𝑠𝑡 used by the FIC estimator is smaller than the actual Σ𝑤,𝑠𝑖𝑚 used for simulation. In addition, the RMS error 

from FIC estimator is always smaller than AKF and WLS estimator when Σ𝑢,𝑒𝑠𝑡 ranges from 1 to 105 N2. 

(a)  (b)  

Figure 2 Averaged RMS error 𝑒̅𝑢 of white input estimation (Σ𝑢,𝑠𝑖𝑚 = 100N2): (a) Σ𝑤,𝑠𝑖𝑚 = Σ𝑤,𝑒𝑠𝑡 = 0 (results from AKF 

and WLS estimator coincide); (b) Σ𝑤,𝑠𝑖𝑚 = 10−10𝐼, Σ𝑤,𝑒𝑠𝑡 = 0 

Next, a sinusoidal input excitation is adopted here on purpose to violate the white Gaussian assumption of the 

unknown input. Using the 3 Hz periodic sinusoidal input excitation with a magnitude of 10 N, 50 independent runs 

of 15 seconds dynamics simulation with randomly generated white Gaussian process noise and measurement noise 

are performed. Same as in the white Gaussian input simulation, the input RMS error 𝑒𝑢 is calculated in each trial run 

for different values of Σ𝑢,𝑒𝑠𝑡 and Σ𝜉,𝑒𝑠𝑡 ranging from 1 to 107 N2. After averaging among 50 trials, the relationship 

between 𝑒̅𝑢 and Σ𝑢,𝑒𝑠𝑡 of the FIC estimator can be obtained. Likewise, the relationship between 𝑒̅𝑢 and Σ𝜉,𝑒𝑠𝑡 of the 

AKF is obtained in the same manner. Figure 3(a) shows the change in 𝑒̅𝑢 as Σ𝑢,𝑒𝑠𝑡 and Σ𝜉,𝑒𝑠𝑡 vary, when there is no 

process noise added to the system in all 50 trials, i.e. Σ𝑤,𝑠𝑖𝑚 = 0. Accordingly, all estimators use Σ𝑤,𝑒𝑠𝑡 = 0. The 

smallest RMS error 𝑒̅𝑢 is achieved by the FIC estimator when Σ𝑢,𝑒𝑠𝑡 is around 25 N2, when the actual calculated 

input covariance Σ𝑢,𝑠𝑖𝑚 is 50 N2. The best Σ𝑢,𝑒𝑠𝑡 of FIC does not equal to the actual Σ𝑢,𝑠𝑖𝑚, which is as expected 
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because the input signal is not white noise as assumed. However, compared to the AKF and WLS estimator, smaller 

RMS error can still be achieved by the FIC estimator when Σ𝑢,𝑒𝑠𝑡 is within a large range around the actual Σ𝑢,𝑠𝑖𝑚. In 

addition, AKF is not sensitive to the changes of Σ𝜉,𝑒𝑠𝑡 and has an averaged RMS error around 0.45 N, leading to the 

results coinciding with the WLS estimator in Figure 3(a). To investigate the situation when process noise covariance 

is not exactly known under sinusoidal excitation, a small amount of process noise with covariance Σ𝑤,𝑠𝑖𝑚 = 10−10𝐼 

is added to the system while the estimators assume Σ𝑤,𝑒𝑠𝑡 = 0. For the AKF and WLS estimator, 𝑒̅𝑢 increases 

significantly to 1.94 N, while the FIC estimator is again able to achieve a much smaller error of 0.4 N when Σ𝑢,𝑒𝑠𝑡 is 

around 3 N2. In addition, the error 𝑒̅𝑢 from the FIC estimator is always smaller than the AKF and WLS estimator 

when Σ𝑢,𝑒𝑠𝑡 ranges from 1 to 105 N2. 

(a)  (b)  

Figure 3  Averaged input RMS error 𝑒̅𝑢 of sinusoidal input estimation (Σ𝑢,𝑠𝑖𝑚 = 50N2): (a) Σ𝑤,𝑠𝑖𝑚 = Σ𝑤,𝑒𝑠𝑡 = 0 (AKF and 

WLS coincide); (b) Σ𝑤,𝑠𝑖𝑚 = 10−10𝐼, Σ𝑤,𝑒𝑠𝑡 = 0 (AKF and WLS coincide) 

To summarize, the best choice of Σ𝑢,𝑒𝑠𝑡 for the FIC estimator is found to be directly related to the prior statistical 

property for the type of input expected in certain application. It is also worth noting that for all cases presented thus 

far, the FIC estimator converges to the WLS estimator when Σ𝑢,𝑒𝑠𝑡 is large, regardless of input types or covariances 

available to the estimator. In addition, if Σ𝑤,𝑒𝑠𝑡 is smaller than the actual Σ𝑤,𝑠𝑖𝑚, the best choice of Σ𝑢,𝑒𝑠𝑡 of the FIC 

estimator will be slightly smaller than Σ𝑢,𝑠𝑖𝑚, and vice versa. The difference in RMS error between AKF and WLS 

is relatively small compared to FIC estimation. This is partially due to the drift error when only acceleration 

measurements are available, which will be shown in the following subsection. Furthermore, by varying Σ𝜉,𝑒𝑠𝑡 of the 

AKF, the performance could not be improved as much as the FIC estimator.  

4.2. Simultaneous input-state estimation 

This subsection first compares the time history of the estimated inputs for a single run of white Gaussian excitation 

for 60 seconds. Recall that the input has a standard deviation of 10 N, i.e. the input covariance Σ𝑢,𝑠𝑖𝑚 = 100 N2. The 
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simulated process noise is set as 0, i.e. Σ𝑤,𝑠𝑖𝑚 = 0. Based on the discussion on white noise excitation in Section 4.1, 

Σ𝜉,𝑒𝑠𝑡 of AKF and Σ𝑢,𝑒𝑠𝑡 of FIC are set as 100 N2. The process noise covariance Σ𝑤,𝑒𝑠𝑡 for all estimators is set as 0, 

same as Σ𝑤,𝑠𝑖𝑚. The simulated acceleration response is contaminated with measurement noise of σ𝑣,𝑠𝑖𝑚 =

10−2 m/s2, which corresponds to 0.4% of the acceleration response intensity at the 1st DOF and 0.7% of the 

acceleration response intensity at the 2nd DOF. Accordingly, measurement noise covariance is set as Σ𝑣,𝑒𝑠𝑡 =

Σ𝑣,𝑠𝑖𝑚 = 10−4𝐼 (m/s2)2. The same initialization of state and the corresponding state estimation covariance is used, 

which assumes the initial condition is static and known. It is observed that all estimators perform almost equally well 

during the initial time period but the AKF and WLS start to drift slightly over time. Figure 4(a) ~ (c) show the close-

up plots of AKF, WLS and FIC estimation results during the final 0.5s, respectively. The confidence interval of three 

times square root of input estimation error covariance, ±3σ𝑢𝑘|𝑘, is included in the close-up plots for the estimated 

input 𝑢̂𝑘|𝑘 obtained from each estimator. It can be seen that the FIC estimator performs consistently well over time 

with a tight confidence interval (Figure 4(c)), while both the AKF and WLS estimators cannot provide a good 

estimate of the input as time increases (Figure 4(a) and (b)). In addition, Figure 4(d) shows the time history of input 

estimation error covariance Σ𝑢𝑘|𝑘 of FIC and WLS estimation in logarithmic scale. AKF has almost identical result 

as the WLS estimator and thus is not included in the plots. The input estimation error covariance of the WLS estimator 

is not able to converge to steady state, while the error covariance of the FIC estimator converges to steady state after 

10s. Similar phenomenon can be observed in state estimation. Figure 4(e) shows the state estimation covariance Σ𝑥𝑘|𝑘 

of 𝑥1 and 𝑥2 in logarithmic scale, and Figure 4(f) shows Σ𝑥𝑘|𝑘 of 𝑥3 and 𝑥4. For the WLS estimator, the error 

covariance of 𝑥1 and 𝑥2 cannot converge to steady state, while the error covariance of 𝑥3 and 𝑥4 are able to converge 

after around 9s. For the FIC estimator, the error covariance of all four states can converge to steady state within 10s.  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 4 Estimation of white Gaussian input: (a) 59.5~60s of AKF estimation results; (b) 59.5~60s of WLS estimation 

results; (c) 59.5~60 of FIC estimation results; (d)  input estimation error covariance Σ𝑢𝑘|𝑘; (e) state estimation error 

covariance Σ𝑥𝑘|𝑘 of 𝑥̂1 and 𝑥̂2; (f) state estimation error covariance Σ𝑥𝑘|𝑘 of 𝑥̂3 and 𝑥̂4  

Next for a single run of sinusoidal excitation, the same 3 Hz sinusoidal input with an amplitude of 10 N is again 

applied for 15 seconds. The simulated acceleration response is contaminated with measurement noise of σ𝑣,𝑠𝑖𝑚 =

10−2 m/s2, which corresponds to 2.6% of the acceleration response intensity at the 1st DOF and 0.7% of the 

acceleration response intensity at the 2nd DOF. Because the dynamical state space system is accurate and no modeling 

error is assumed in this example, process noise covariance Σ𝑤,𝑒𝑠𝑡 is set as 0. From the discussion on sinusoidal 

excitation in Section 4.1 when no process is applied to the system, Σ𝜉,𝑒𝑠𝑡 of AKF and Σ𝑢,𝑒𝑠𝑡 of FIC are set as 25 N2. 

Because all estimators perform almost equally well during the initial time period, plots are not included here. Figure 

5(a) ~ (c) shows the comparison of estimated sinusoidal input from the AKF, WLS and FIC estimators during the 

final 0.5s, respectively. The confidence interval of three times square root of input estimation error covariance, 

±3σ𝑢𝑘|𝑘, is included in the close-up plots for the estimated input 𝑢̂𝑘|𝑘 obtained from each estimator.  
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 Similar as in the white noise input estimation, the drift phenomenon of the AKF and WLS estimator still exists 

under sinusoidal input. On the other hand, Figure 5(c) shows that even though the white Gaussian assumption is 

violated because of the sinusoidal input, the FIC estimator can still estimate the input consistently well over time. 

Figure 5(d) plots the input estimation error covariance Σ𝑢𝑘|𝑘 of the FIC and WLS estimator in logarithmic scale (AKF 

has almost the same result as WLS and thus is not included here). The input estimation error covariance Σ𝑢𝑘|𝑘 of the 

WLS estimator cannot converge to steady state, while Σ𝑢𝑘|𝑘 of the FIC estimator converges after 2.5s. Indeed, not 

only the input error covariance Σ𝑢𝑘|𝑘 but also the state estimation error covariance Σ𝑥𝑘|𝑘 of 𝑥1 and 𝑥2 from the WLS 

estimator cannot converge to steady state (Figure 5(e)), although the error covariances of 𝑥3 and 𝑥4 are able to 

converge. In contrast, the state estimation error covariances of all states from the FIC estimator converge to steady 

state within 2.5s.  

(a)  (b)  

(c)  (d)  

(e)  (f)   

Figure 5 Estimation of sinusoidal input: (a) 14.5~15s of AKF estimation results; (b) 14.5~15s of WLS estimation results; (c) 

14.5~15s of FIC estimation results; (d) input estimation error covariance Σ𝑢𝑘|𝑘; (e) state estimation error covariance Σ𝑥𝑘|𝑘 of 𝑥̂1 

and  𝑥̂2; (f) state estimation error covariance Σ𝑥𝑘|𝑘 of 𝑥̂3 and  𝑥̂4 
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To quantify the performance of the estimators, the corresponding RMS error of input and displacement estimation 

from one trial of the white noise input and one trial of the sinusoidal input is summarized in Table 3. For white 

Gaussian input, the RMS error is calculated for the entire time history, the initial 1s and the final 1s. While all the 

three estimators achieve similar RMS error during the initial 1s, the FIC estimator performs consistently better in the 

long run. During the 59~60s, the AKF and WLS estimator have a much larger RMS error in both estimated input 

and displacement compared to the FIC estimator. For sinusoidal excitation, the RMS error is calculated for the entire 

time history, the initial 5s and the final 5s. Similar phenomenon can be observed. All three estimators perform equally 

well during the initial 5s but the errors of AKF and WLS increase as simulation time increases. In all cases, the FIC 

estimator achieves smallest RMS error (with a small Σ𝑢𝑘|𝑘) not only in input estimation but also in displacement 

estimation and eliminates the drift error. Similar results exist in velocity estimation, which is not included here.  

Table 3 RMS error comparison among different input estimators 

Estimator type 
White Gaussian input excitation Sinusoidal input excitation 

0~60s 0~1s 59~60s 0~15s 0~5s 10~15s 

Input 

estimation 

errors 

(unit: N) 

AKF 9.53 0.133  16.35 1.867 0.573 2.410 

WLS 9.52 0.137 16.33 1.871 0.585 2.393 

FIC 0.82 0.120 1.011 0.618 0.477 0.656 

Displacement 

estimation 

errors 

(unit: m) 

AKF 6.80 × 10−3 8.81 × 10−5 1.17 × 10−2  1.33 × 10−3  1.03 × 10−3  1.72 × 10−3 

WLS 6.79 × 10−3 9.16 × 10−5 1.17 × 10−2  1.33 × 10−3  1.04 × 10−3  1.70 × 10−3 

FIC 5.84 × 10−4 7.88 × 10−5 7.14 × 10−4  4.38 × 10−4  3.91 × 10−4  4.67 × 10−4 

 

The FIC estimator has also been tested with impact load estimation, while the results are omitted due to page 

limit.  Although the FIC estimator is derived based on white Gaussian assumption of the input, the estimator can still 

provide adequate accuracy for estimating impact load.  In particular, better performance can be achieved when the 

input covariance is chosen such that the corresponding standard deviation is closer to the impact magnitude.   

5. Full-scale structural validation 

A full-scale structure is used to validate the proposed FIC estimator and compare its performance with the AKF 

and WLS estimator, when only acceleration measurements are available. Figure 6 shows a set of four identical two-

story two-bay concrete frames, which were used to compare different seismic retrofitting approaches. Each frame 

was constructed with a gap from its neighboring frames, allowing free in-plane longitudinal movement and can thus 
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be tested independently from the other frames. Experimental data from frame #1 is used in this study. Figure 7 shows 

the frame consists of two stories with a story height of 3.66 meters (12 ft), and two bays with a column spacing of 

5.49 meters (18 ft). The width of the two elevated slabs is 2.74 meters (9 ft). To provide excitation, a hydraulic linear 

inertia shaker was installed at the middle beam-column joint on the roof, i.e. the second elevated slab (Figure 7). The 

moving mass on the shaker was used to generate in-plane excitation to the structure with a prescribed displacement 

record [35, 36]. In this study, the input is a scaled El Centro earthquake record with the maximum displacement of 

the shaker mass scaled to 1 inch. In order to calculate the exact shaker excitation force during the test, an 

accelerometer was installed on the moving mass of the shaker. The low-amplitude El Centro excitation caused little 

to no damage to the structure, thus the structure can be treated as a linear system in this study. To measure the 

dynamic response of the frame, a total of 44 acceleration channels (Kinemetrics EpiSensor ES-T [37] and ES-U [38]) 

were instrumented on the structure, including 27 in-plane longitudinal directions and 17 vertical directions. 

Specifically, the accelerometers were instrumented at mid-length and quarter length locations of columns and 

longitudinal beams. The sampling frequency is 200 Hz for all acceleration channels and the measured responses are 

filtered using an 8th order bandpass (0.5 ~ 50 Hz) Butterworth filter in both the forward and reverse directions to 

remove phase distortion.  

 

      

Figure 6 Full-scale test frame Figure 7 Accelerometer instrumentation 

A finite element (FE) model of the concrete frame is built in SAP2000. The mesh size of the FE model is around 

50.8 cm (20 in). The model contains a total of 2,482 degrees-of-freedom (DOFs). Because of the large size of the 

state-space system matrices (in Eq. (51) and (52)), model order reduction is needed. When 𝑛mode of modes are used 
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for model order reduction, Ω denotes a diagonal matrix with diagonal entries as the first 𝑛mode number of natural 

frequencies. In addition, denote the first 𝑛mode number of the mass-normalized eigenvectors (vibrating mode shapes) 

as Ψ = [𝜓1 𝜓2 ⋯ 𝜓𝑛mode] ∈ ℝ
𝑛DOF×𝑛mode, where 𝜓𝑖 is a column vector denoting the eigenvector of the 𝑖-th 

mode, i.e. 𝜓𝑖 = [𝜓1,𝑖 𝜓2,𝑖 ⋯ 𝜓𝑛DOF,𝑖]
𝑇. The displacement vector 𝑞 in physical coordinates is transformed to 𝑧 

in modal coordinates as 𝑞 = Ψ𝑧, where 𝑧 ∈ ℝ𝑛mode. Therefore, the reduced order model is given by Eq. (53) and 

(54). 

𝑥̇𝑚𝑜𝑑 = {
𝑧̇
𝑧̈
} = [

0 I
−Ω2 −Ψ𝑇𝐶dampΨ

] {
𝑧
𝑧̇
} + [

0
Ψ𝑇Γ𝑢

] 𝑢  

≜ 𝐴𝑐,𝑚𝑜𝑑𝑥𝑚𝑜𝑑 + 𝐵𝑐,𝑚𝑜𝑑𝑢 (53) 

𝑦 = Γ𝑦𝑞̈ + 𝑣 = Γ𝑦Ψ[−Ω
2 −Ψ𝑇𝐶dampΨ] {

𝑧
𝑧̇
} + Γ𝑦ΨΨ

𝑇Γ𝑢𝑢 + 𝑣  

≜ 𝐶𝑐,𝑚𝑜𝑑𝑥𝑚𝑜𝑑 + 𝐷𝑐,𝑚𝑜𝑑𝑢 + 𝑣 (54) 

Because the first two in-plane modes contribute the most to the structural response under longitudinal shaking, 

𝑛mode is chosen as two. Detailed modal analysis from experimental measurements with comparison to the FE model 

is provided in [14] and summarized in Table 4.  Based on the modal analysis result, the first two modes identified 

from experimental measurements can match well with the corresponding ones from the FE model. To obtain the 

continuous state space model, a Rayleigh damping model is used to construct the damping matrix 𝐶damp based on 

the identified damping ratios of the first two modes. The natural frequency matrix Ω and the mode shape matrix Ψ 

are obtained from the FE model. 

Table 4 Modal property comparison between FE model and experimental identification results 

Mode 1st 2nd 3rd 4th 

Experiment 𝑓𝑖
EXP (Hz) 2.00 5.41 13.92 19.82 

FE model 𝑓𝑖
FE (Hz) 1.96 5.63 14.96 20.61 

(𝑓𝑖
FE − 𝑓𝑖

EXP)/𝑓𝑖
EXP -1.57% 4.16% 7.44% 4.00% 

MAC values 0.999 0.988 0.935 0.887 

 

5.1. Effect of sensor instrumentation on input estimation 

For the reduced order model, the effect of sensor instrumentation on input estimation is discussed by examining 

the magnitude of the feedthrough matrix 𝐷𝑐,𝑚𝑜𝑑, which degenerates to a column vector in this single input example. 
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Because zero-order-hold discretization is used, the discrete feedthrough vector 𝐷 of the estimators is the same as the 

continuous 𝐷𝑐,𝑚𝑜𝑑. Based on Eq. (54), a relatively large 𝐷𝑐,𝑚𝑜𝑑 is needed such that the unknown input 𝑢 can be 

distinguished from measurement noise 𝑣. To derive an expression of the feedthrough vector of the reduced order 

model, denote the input DOF as the 𝑟-th DOF and the measured DOFs as the 𝑠1, …, 𝑠𝑚-th DOFs of the full-order 

model. Therefore, the input location matrix Γ𝑢 ∈ ℝ
𝑛DOF×𝑛𝑢, which again degenerates to a column vector in this 

example, has value one at the 𝑟-th DOF and zero elsewhere. The output location matrix Γ𝑦 ∈ ℝ
𝑚×𝑛DOF  has value 

one at the 𝑗-th row and the 𝑠𝑗-th column with 𝑗 = 1,… ,𝑚; all other entries of Γ𝑦 are zero. The 𝑚 × 1 feedthrough 

vector of the reduced order model can thus be expanded as follows. 

𝐷 = 𝐷𝑐,𝑚𝑜𝑑 = Γ𝑦ΨΨ
𝑇{Γ𝑢} = Γ𝑦 ∑

[
 
 
 
 

𝜓1,𝑖
2 𝜓1,𝑖𝜓2,𝑖 ⋯ 𝜓1,𝑖𝜓𝑛DOF,𝑖

𝜓2,𝑖𝜓1,𝑖 𝜓2,𝑖
2 ⋯ 𝜓2,𝑖𝜓𝑛DOF,𝑖

⋮ ⋮ ⋱ ⋮
𝜓𝑛DOF,𝑖𝜓1,𝑖 𝜓𝑛DOF,𝑖𝜓2,𝑖 ⋯ 𝜓𝑛DOF,𝑖

2
]
 
 
 
 𝑛mode

𝑖=1

{Γ𝑢} 

= ∑

{
 

 
𝜓𝑠1,𝑖𝜓𝑟,𝑖
𝜓𝑠2,𝑖𝜓𝑟,𝑖

⋮
𝜓𝑠𝑚,𝑖𝜓𝑟,𝑖}

 

 𝑛mode

𝑖=1

 

(55) 

Equation (55) shows that the magnitude of feedthrough vector 𝐷𝑐,𝑚𝑜𝑑 is determined by the product of eigenvector 

entries between the input DOF and the measured DOFs summed over each mode. For the 𝑗-th measurement, the 

product of 𝜓𝑠𝑗,𝑖 and 𝜓𝑟,𝑖 summed over 𝑛mode modes needs to be large enough to ensure a relatively large value on 

the 𝑗-th row of 𝐷𝑐,𝑚𝑜𝑑. In this structural example, a total of 44 acceleration measurements are available, i.e. 𝑚 = 44, 

including 27 longitudinal measurements and 17 vertical measurements. Figure 8 shows the entries of {𝐷𝑐,𝑚𝑜𝑑}𝑗 with 

𝑗 = 1,… ,44. Each entry corresponds to an acceleration measurement 𝐴𝑗 as numbered in Figure 7. The larger values 

of 𝐷𝑐,𝑚𝑜𝑑 are from the longitudinal measurements located above the first elevated slab, i.e. A5~A8, A13~A16, 

A21~A23, A26 and A27. On the other hand, the entries of 𝐷𝑐,𝑚𝑜𝑑 corresponding to longitudinal measurements on 

and below the first elevated slab and all the vertical measurements are relatively small; these measurements contribute 

less to estimation of the longitudinal shaker input on the 2nd elevated slab.  
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Figure 8 Entries of feedthrough vector {𝐷𝑐,𝑚𝑜𝑑}𝑗  , 𝑗 = 1,… , 44. Each entry corresponds to acceleration measurement 𝐴𝑗. 

5.2. Effect of covariance knowledge on input estimation 

Before applying the estimators using field measurements, the effect of covariance parameters available to the 

estimators on input estimation is investigated in simulation first. In addition to the previously discussed three 

estimators, an online drift filter is combined with the WLS estimator to reduce drift error, denoted here as the WLSF 

estimator [14].  The online input drift filter is executed in real time, after each input estimation and before the state 

estimation. As a result, drift error in both input and state estimation can be reduced. The online drift filter used here 

is a 4th order high-pass Chebyshev Type I filter with cut-off frequency of 10−4 Hz and peak-to-peak passband ripple 

of 0.05 dB. Following the notations in Section 4.1, the covariances for the estimator operation include Σ𝑢,𝑒𝑠𝑡 of the 

FIC estimator, Σ𝜉,𝑒𝑠𝑡 of the AKF, and Σ𝑤,𝑒𝑠𝑡 for all four estimators. Measurement noise covariance Σ𝑣,𝑒𝑠𝑡 can be 

approximated based on sensor specification. The measured shaker excitation force is used as the input to simulate 

acceleration response of the structure. The standard deviation of measurement noise is set as σ𝑣 = 50 μg, as obtained 

from a sensor noise level test. Accordingly, all estimators assume the same standard deviation of measurement noise 

of 50 μg. Note that this noise level corresponds to 1% to 20% of the intensity of the acceleration measurements 

obtained from the experiment, depending on the sensor location. The initial value of state estimation μ𝑥0 is set as 0 

and the diagonal entries of Σ𝑥0 are set as 10−10 for all estimators to account for uncertainty in the initial condition 

of the structure. For AKF, 𝑢̂0, Σ𝑢0 and Σ𝑥0𝑢0 are set as zero. In this example, process noise 𝑤𝑘 is only considered 

during estimation not in simulation, i.e. Σ𝑤,𝑠𝑖𝑚 = 0.  

To study the effect of estimator covariances on input estimation, the averaged input RMS error 𝑒̅𝑢 is obtained 

from 20 trials in the same way described in Section 4.1. A same value of process noise covariance Σ𝑤,𝑒𝑠𝑡 is used by 

all four estimators when performing estimation in 20 trials. The simulation of each trial lasts 30 seconds with 
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randomly generated white Gaussian measurements noise. In each trial, the WLS and the WLSF estimators are 

operated only once. On the other hand, the FIC estimator and AKF are performed for different values of Σ𝑢,𝑒𝑠𝑡 and 

Σ𝜉,𝑒𝑠𝑡 ranging from 0.5 to 107 kN2. At each value of Σ𝑢,𝑒𝑠𝑡 and Σ𝜉,𝑒𝑠𝑡, input RMS error 𝑒𝑢 is calculated accordingly. 

Among 20 trials, the averaged 𝑒̅𝑢 of the FIC estimator and AKF can be obtained. When no process noise is applied, 

Figure 9(a) shows the relationship between 𝑒̅𝑢 and the covariances of FIC and AKF in comparison to the results from 

the WLS and WLSF estimators. The smallest RMS error is 0.12 kN achieved by the FIC estimator when Σ𝑢,𝑒𝑠𝑡 is 

around 5 kN2. This is on the same order of magnitude to the calculated variance 1.7 kN2 of the actual input signal 

during 1s ~ 6s, when the large excitation happens. For AKF, the estimator is not sensitive to the change of Σ𝜉,𝑒𝑠𝑡, 

and the RMS error 𝑒̅𝑢 is close to 0.64 kN, similar as the result from the WLS estimator; the two curves coincide in 

Figure 9(a). After combining the drift filter in WLS estimation, the RMS error is significantly reduced to 0.16 kN.  

Figure 9(b) shows the result when a small amount of process noise is assumed for all the estimators by setting the 

covariance Σ𝑤,𝑒𝑠𝑡 to be a diagonal matrix as Σ𝑤,𝑒𝑠𝑡 = 10
−12𝐼. It can be observed that a small amount of process 

noise assumed by the estimators does not affect the RMS error significantly. In addition, the FIC estimator still 

performs better when Σ𝑢,𝑒𝑠𝑡 is chosen between 0.5 and 30 kN2. Furthermore, when Σ𝑢,𝑒𝑠𝑡 becomes larger than 105, 

the results from FIC estimator converge to those of the WLS estimator in both cases.  

 

(a)  (b)  

Figure 9   Averaged RMS error 𝑒̅𝑢 of shaker input estimation: (a) Σ𝑤,𝑠𝑖𝑚 = Σ𝑤,𝑒𝑠𝑡 = 0 (results from AKF and WLS 

coincide); (b) Σ𝑤,𝑠𝑖𝑚 = 0, Σ𝑤,𝑒𝑠𝑡 = 10
−12𝐼  (results from AKF and WLS coincide) 

 

5.3. Input estimation with simulated acceleration responses 

This subsection provides a single run of simulation to compare the estimated inputs from all four estimators. 

Because the dynamical state space system is accurate and no modeling error is assumed in simulation, process noise 
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covariance Σ𝑤,𝑒𝑠𝑡 is set as 0. For the FIC estimator, Σ𝑢,𝑒𝑠𝑡 is set as 5 kN2. For AKF, because 𝑒̅𝑢 is not sensitive to 

the value of Σ𝜉,𝑒𝑠𝑡 as shown in Section 5.2, Σ𝜉,𝑒𝑠𝑡 is set as the same as Σ𝑢,𝑒𝑠𝑡 in this example. The measurement noise 

covariance and initial state covariance are set the same as those in Section 5.2. With a single trial of simulated 

acceleration response, Figure 10(a) shows the comparison of estimated inputs from 0s to 30s; Figure 10(b) shows the 

close-up plot of all four estimators during the initial 2s to 4s; Figure 10(c) ~ (f) shows the estimated input by of AKF, 

WLS, WLSF and FIC during the final 24s to 29s, respectively. The confidence interval of three times square root of 

input estimation error covariance, ±3σ𝑢𝑘|𝑘, is included for the estimated input 𝑢̂𝑘|𝑘 obtained from each estimator. 

As shown in Figure 10(b), during the initial 2s ~ 4s, all estimators perform similarly well in estimating the shaker 

input. However, because of the drift error, both AKF (Figure 10(c)) and WLS (Figure 10(d)) could not estimate the 

input very well as simulation time increases. Figure 10(e) shows that although the online drift filter of WLSF 

estimator could reduce drift error from the WLS estimator, the input estimation error covariance still increases over 

time. In contrast, Figure 10(f) shows that the FIC estimator is able to estimate the input consistently well with a tight 

estimation confidence interval.  

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 10 Estimation of shaker input with simulated measurements. (a) AKF, WLS, FIC and WLSF in 0~30s; (b) AKF, 

WLS, FIC and WLSF in 2~4s; (c) 24~29s of AKF estimation results; (d) 24~29s of WLS results; (e) 24~29s of WLSF 

results; (f) 24~29s of FIC results. 
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5.4. Input estimation with experimental acceleration measurements 

The performance of AKF, WLS, FIC and WLSF estimators are further compared using experimental acceleration 

measurements. To account for potential modeling error when using experimental acceleration measurements, a non-

zero process noise covariance Σ𝑤,𝑒𝑠𝑡 is used by the estimators. The values of Σ𝑤,𝑒𝑠𝑡 is determined based on the state 

estimation error covariance Σ𝑥 during steady state, which is first obtained by setting Σ𝑤,𝑒𝑠𝑡 = 0. The process noise 

covariance Σ𝑤,𝑒𝑠𝑡 is then set to be at least 100 times smaller than the corresponding states error covariance. As a 

result, the four diagonal entries of Σ𝑤,𝑒𝑠𝑡 are chosen as 10−10,10−12, 10−10 and 10−12, respectively. The other 

estimator covariance parameters, i.e. Σ𝑢,𝑒𝑠𝑡 of FIC, Σ𝜉,𝑒𝑠𝑡 of AKF and measurement noise covariance Σ𝑣 are the same 

as those used in Section 5.3.  

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 11 Estimation of shaker input with experimental measurements. (a) AKF, WLS, FIC and WLSF in 0~30s; (b) AKF, 

WLS, FIC and WLSF in 2~4s; (c) 24~29s of AKF estimation results; (d) 24~29s of WLS results; (e) 24~29s of WLSF 

results; (f) 24~29s of FIC results. 

Figure 11(a) shows the comparison of estimated inputs from 0s to 30s; Figure 11(b) shows the close-up plots of 

the initial 2s to 4s; Figure 11(c) ~ (f) shows the estimated input from AKF, WLS, WLSF and FIC estimator during 

the final 24s to 29s, respectively. All four estimators perform similarly at the beginning (Figure 11(b)) while drift 

error persists in AKF and WLS estimation as time increases. As shown in Figure 11(c) and (d), the AKF and WLS 
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estimator show a large drift error in the estimated input as well as a large estimation error covariance. As for WLSF, 

Figure 11(e) shows the online drift filter of the WLSF estimator can again improve the WLS performance by reducing 

drift error but could not decrease the estimation error covariance. In contrast, the FIC estimator can estimate the input 

well with a small error covariance (Figure 11(f)). 

Because only FIC and WLSF can provide a good estimate of the input over time, the input estimation error 

covariance Σ𝑢𝑘|𝑘 and state estimation error covariance Σ𝑥𝑘|𝑘of these two estimators are further discussed here. Figure 

12(a) shows that for the FIC estimator, the input estimation error covariance Σ𝑢𝑘|𝑘 converge to steady state after 

around 8s. In contrast, the input error covariance of WLSF cannot converge to steady state. Figure 12(b) shows the 

time history of state estimation error covariance Σ𝑥𝑘|𝑘 of FIC and WLSF. For the FIC estimator, the error covariances 

of all states converge to steady state, but the error covariances of  𝑥1 and 𝑥2 from the WLSF cannot converge to 

steady state, even though the error covariances of 𝑥3 and 𝑥4  are able to converge. Same phenomenon can be observed 

for AKF and the WLS estimator without drift filter and is not further included here. It should be noted that a longer 

simulation time could not help the error covariance of AKF and WLS to converge. Instead, the error covariance keeps 

increasing over time. This again indicates the AKF and WLS estimator are not completely observable. Although an 

online drift filter is able to reduce drift error, it cannot resolve the un-observability issue.  

(a)  (b)  

Figure 12  Convergence of estimation error covariance of FIC and WLSF: (a) input estimation error covariance Σ𝑢𝑘|𝑘 of 

FIC and WLSF; (b) state estimation error covariance Σ𝑥𝑘|𝑘 of FIC and WLSF (in modal coordinates) 

In summary, in both simulation and experimental validation, both the FIC and WLSF estimator result in smaller 

input estimation error compared to AKF and WLS estimator. Furthermore, although the WLSF perform similar well 

as the FIC estimator when experimental measurements are used, the online drift filter requires pre-tuning of the filter 

order, cutoff frequency and passband ripple. In contrast, the input covariance Σ𝑢,𝑒𝑠𝑡 of the FIC estimator can be set 
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based on any available statistical property of the input signal. For example, if the covariance of the unknown input 

can be obtained as prior knowledge for the type of input expected in certain application, Σ𝑢,𝑒𝑠𝑡 should be simply set 

the same as the covariance. If the covariance cannot be determined a priori, the expected input magnitude can be 

used to approximate the input covariance and set as Σ𝑢,𝑒𝑠𝑡 by the estimator. Specifically, for the El Centro input in 

this example, the best choice of Σ𝑢,𝑒𝑠𝑡 is around 5 kN2 (Section 5.2); the resulting standard deviation σ𝑢,𝑒𝑠𝑡 =

2.24 kN is around the same order of magnitude as the input (Figure 10 (a)). In addition, the FIC estimator can provide 

a tighter estimation confidence interval and the estimator can converge to steady state (Figure 12). It should also be 

noted that when using experimental data, modeling error can be seen affecting all estimator performance caused by 

the discrepancy between the FE model and the actual structure. Future FE model updating can be used to further 

improve the estimation results. 

6. Conclusion 

 This paper presents a unifying MMSE framework for simultaneous input-state estimation for systems with direct 

feedthrough of the unknown input when the exact state space model of the input is not available. The finite input 

covariance (FIC) estimator is proposed when assuming the unknown input is white Gaussian with covariance Σ𝑢. 

Proof is provided that when the input covariance of the white Gaussian input approaches infinity, the FIC estimator 

is theoretically equivalent to the weighted least squares (WLS) estimator proposed by Gillijns et al. in [6]. Such 

flexibility of the FIC estimator helps to utilize any available property of the unknown input, such as the standard 

deviation or maximum magnitude. When no information of the input is available, the FIC estimator can be readily 

converted to the WLS estimator. In addition, when a finite input covariance is used, drift error can be eliminated, and 

a tighter estimation confidence interval can be achieved by the FIC estimator when only acceleration measurements 

are available. The FIC estimator is validated and compared with an augmented Kalman filter (AKF) assuming a 

Gaussian random walk input model and the WLS estimator using data from both simulation and field test. The 

equivalence between the FIC estimator and the WLS estimator can be demonstrated when Σ𝑢 is larger than a certain 

level. In addition, smaller error can be achieved by the FIC estimator when Σ𝑢 is close to the actual statistical property 

of the unknown input.  
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While due to page limit the paper only described studies with one input channel, the proposed FIC estimator can 

provide similar performance for the identification of multiple inputs with MIMO systems.  When estimating multiple 

inputs, it is also recommended to maintain the full-column rank of the feedthrough matrix 𝐷, and devise a 

measurement system that provides relatively large 𝐷𝑢𝑘 entries (in comparison to the measurement noise 𝑣𝑘). Finally, 

as an ongoing research topic, for systems without direct feedthrough of the unknown input, a similar framework can 

be used to derive the theoretical relationship among all the estimators. 

7. Acknowledgements 

This research was partially funded by the National Science Foundation (CMMI- 1634483).  Any opinions, findings, 

and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily 

reflect the view of the sponsors. 

References 

[1] P. K. Kitanidis, "Unbiased minimum-variance linear state estimation," Automatica, vol. 23, no. 6, pp. 775-

778, 1987. 

[2] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking and navigation: 

theory algorithms and software. John Wiley & Sons, 2004. 

[3] B. Friedland, "Treatment of bias in recursive filtering," IEEE Transactions on Automatic Control, vol. 14, 

no. 4, pp. 359-367, 1969. 

[4] E. I. Verriest, "Optimal filtering for crypto-deterministic systems with application to delay systems with 

unknown initial data,"  Proceedings of the 47th IEEE Conference on Decision and Control, pp. 49-54: IEEE, 

2008. 

[5] M. Darouach, M. Zasadzinski, and M. Boutayeb, "Extension of minimum variance estimation for systems 

with unknown inputs," Automatica, vol. 39, no. 5, pp. 867-876, 2003. 

[6] S. Gillijns and B. De Moor, "Unbiased minimum-variance input and state estimation for linear discrete-time 

systems with direct feedthrough," Automatica, vol. 43, no. 5, pp. 934-937, 2007. 

[7] E. Lourens, C. Papadimitriou, S. Gillijns, E. Reynders, G. De Roeck, and G. Lombaert, "Joint input-response 

estimation for structural systems based on reduced-order models and vibration data from a limited number of 

sensors," Mechanical Systems and Signal Processing, vol. 29, pp. 310-327, 2012. 

[8] K. Maes, A. Smyth, G. De Roeck, and G. Lombaert, "Joint input-state estimation in structural dynamics," 

Mechanical Systems and Signal Processing, vol. 70, pp. 445-466, 2016. 

[9] K. Maes, K. V. Nimmen, E. Lourens, A. Rezayat, P. Guillaume, G. D. Roeck, and G. Lombaert, 

"Verification of joint input-state estimation for force identification by means of in situ measurements on a 

footbridge," Mechanical Systems and Signal Processing, vol. 75, pp. 245-260, 2016. 

[10] E. Lourens, E. Reynders, G. De Roeck, G. Degrande, and G. Lombaert, "An augmented Kalman filter for 

force identification in structural dynamics," Mechanical Systems and Signal Processing, vol. 27, pp. 446-

460, 2012. 

[11] S. E. Azam, E. Chatzi, and C. Papadimitriou, "A dual Kalman filter approach for state estimation via output-

only acceleration measurements," Mechanical Systems and Signal Processing, vol. 60, pp. 866-886, 2015. 

[12] S. E. Azam, E. Chatzi, C. Papadimitriou, and A. Smyth, "Experimental validation of the Kalman-type filters 

for online and real-time state and input estimation," Journal of vibration and control, vol. 23, no. 15, pp. 

2494-2519, 2017. 



34 

 

[13] F. Naets, J. Cuadrado, and W. Desmet, "Stable force identification in structural dynamics using Kalman 

filtering and dummy-measurements," Mechanical Systems and Signal Processing, vol. 50, pp. 235-248, 

2015. 

[14] X. Liu and Y. Wang, "Input estimation of a full-scale concrete frame structure with experimental 

measurements,"  Proceedings of the 37th International Modal Analysis Conference (IMAC XXXVII), 

Orlando, FL, USA, 2019. 

[15] M. Valikhani and D. Younesian, "Bayesian framework for simultaneous input/state estimation in structural 

and mechanical systems," Structural Control and Health Monitoring, p. e2379, 2019. 

[16] O. Sedehi, C. Papadimitriou, D. Teymouri, and L. S. Katafygiotis, "Sequential Bayesian estimation of state 

and input in dynamical systems using output-only measurements," Mechanical Systems and Signal 

Processing, vol. 131, pp. 659-688, 2019. 

[17] R. Nayek, S. Chakraborty, and S. Narasimhan, "A Gaussian process latent force model for joint input-state 

estimation in linear structural systems," Mechanical Systems and Signal Processing, vol. 128, pp. 497-530, 

2019. 

[18] X. Liu, "Simultaneous input and state estimation through a unifying MMSE framework with applications in 

structural dynamics," Ph.D. Dissertation, Civil and Environmental Engineering, Georgia Institute of 

Technology, Atlanta,GA,USA, 2019. 

[19] S. Sarkka, M. A. Alvarez, and N. D. Lawrence, "Gaussian process latent force models for learning and 

stochastic control of physical systems," IEEE Transactions on Automatic Control, 2018. 

[20] W.-H. Chen, "Disturbance observer based control for nonlinear systems," IEEE/ASME transactions on 

mechatronics, vol. 9, no. 4, pp. 706-710, 2004. 

[21] H. Sun, D. Feng, Y. Liu, and M. Q. Feng, "Statistical regularization for identification of structural parameters 

and external loadings using state space models," Computer‐Aided Civil and Infrastructure Engineering, vol. 

30, no. 11, pp. 843-858, 2015. 

[22] H. Sun and O. Büyüköztürk, "Identification of traffic-induced nodal excitations of truss bridges through 

heterogeneous data fusion," Smart Materials and Structures, vol. 24, no. 7, p. 075032, 2015. 

[23] F. Naets, J. Croes, and W. Desmet, "An online coupled state/input/parameter estimation approach for 

structural dynamics," Computer Methods in Applied Mechanics and Engineering, vol. 283, pp. 1167-1188, 

2015. 

[24] Y. Lei, D. Xia, K. Erazo, and S. Nagarajaiah, "A novel unscented Kalman filter for recursive state-input-

system identification of nonlinear systems," Mechanical Systems and Signal Processing, vol. 127, pp. 120-

135, 2019. 

[25] R. Astroza, H. Ebrahimian, Y. Li, and J. P. Conte, "Bayesian nonlinear structural FE model and seismic input 

identification for damage assessment of civil structures," Mechanical Systems and Signal Processing, vol. 93, 

pp. 661-687, 2017. 

[26] H. Ebrahimian, R. Astroza, J. P. Conte, and C. Papadimitriou, "Bayesian optimal estimation for output‐only 

nonlinear system and damage identification of civil structures," Structural Control and Health Monitoring, 

vol. 25, no. 4, p. e2128, 2018. 

[27] S. Pan, D. Xiao, S. Xing, S. Law, P. Du, and Y. Li, "A general extended Kalman filter for simultaneous 

estimation of system and unknown inputs," Engineering Structures, vol. 109, pp. 85-98, 2016. 

[28] M. I. Friswell and J. E. Mottershead, Finite element model updating in structural dynamics (Solid mechanics 

and its applications ; v. 38). Dordrecht; Boston: Kluwer Academic Publishers, 1995, pp. xii, 286 p. 

[29] B. Jaishi and W. X. Ren, "Damage detection by finite element model updating using modal flexibility 

residual," Journal of Sound and Vibration, vol. 290, no. 1-2, pp. 369-387, Feb 2006. 

[30] C. Farhat and F. M. Hemez, "Updating finite element dynamic models using an element-by-element 

sensitivity methodology," AIAA Journal, vol. 31, no. 9, pp. 1702-1711, 1993. 

[31] J. E. Mottershead, M. Link, and M. I. Friswell, "The sensitivity method in finite element model updating: a 

tutorial," Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2275-2296, 2011. 

[32] D. Zhu, X. Dong, and Y. Wang, "Substructure stiffness and mass updating through minimization of modal 

dynamic residuals," Journal of Engineering Mechanics, vol. 142, no. 5, p. 04016013, 2016. 

[33] G. James, T. G. Carne, and J. P. Lauffer, "The natural excitation technique (NExT) for modal parameter 

extraction from operating structures," Modal Analysis-the International Journal of Analytical and 

Experimental Modal Analysis, vol. 10, no. 4, p. 260, 1995. 



35 

 

[34] J. Ching and J. Beck, "Real-time reliability estimation for serviceability limit states in structures with 

uncertain dynamic excitation and incomplete output data," Probabilistic engineering mechanics, vol. 22, no. 

1, pp. 50-62, 2007. 

[35] E. Yu, D. H. Whang, J. P. Conte, J. P. Stewart, and J. W. Wallace, "Forced vibration testing of buildings 

using the linear shaker seismic simulation (LSSS) testing method," Earthquake engineering & structural 

dynamics, vol. 34, no. 7, pp. 737-761, 2005. 

[36] X. Dong, X. Liu, T. Wright, Y. Wang, and R. DesRoches, "Validation of wireless sensing technology 

densely instrumented on a full-scale concrete frame structure,"  Proceedings of International Conference on 

Smart Infrastructure and Construction (ICSIC), Cambridge, U.K., June 27-29, 2016.  

[37] Kinemetrics, "EpiSensor (ES-T) Datasheet," ed. www.kinemetrics.com, 2018. 

[38] Kinemetrics, "EpiSensor (ES-U2) Datasheet," ed. www.kinemetrics.com, 2018. 
 

https://gtvault-my.sharepoint.com/personal/ywang93_gatech_edu/Documents/YW/Courses/CEE%206511%20Random%20Vibrations/Notes/Estimation/InputEst/Publications/NEES_inputEst/2nd/www.kinemetrics.com
https://gtvault-my.sharepoint.com/personal/ywang93_gatech_edu/Documents/YW/Courses/CEE%206511%20Random%20Vibrations/Notes/Estimation/InputEst/Publications/NEES_inputEst/2nd/www.kinemetrics.com

