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Abstract: This research investigates the application of sum-of-squares (SOS) optimization method on finite 

element model updating through minimization of modal dynamic residuals. The modal dynamic residual 

formulation usually leads to a nonconvex polynomial optimization problem, the global optimality of which 

cannot be guaranteed by most off-the-shelf optimization solvers. The sum-of-squares (SOS) optimization 

method can recast a nonconvex polynomial optimization problem into a convex semidefinite programming 

(SDP) problem. However, the size of the SDP problem can grow very large, sometimes with hundreds of 

thousands of variables. To improve the computation efficiency, this study exploits the sparsity in SOS 

optimization to significantly reduce the size of the SDP problem. A numerical example is provided to 

validate the proposed method.  

Key words: Sum-of-squares (SOS) optimization, sparse SOS, modal dynamic residual approach, finite 

element model updating 

1 Introduction 

Finite element (FE) model updating refers to methods and techniques to improve and fine-tune a numerical 

structural model, based on experimental measurements from the as-built structure. By minimizing the 

discrepancies between the characteristics of an as-built structure and its FE model, model updating can 

achieve higher simulation accuracy. Various FE model updating algorithms have been investigated and 

applied in practice. Generally, these algorithms can be categorized into two groups: time-domain 
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approaches and frequency-domain approaches. The time-domain approaches directly utilize the measured 

time history data for model updating. Among these approaches, the extended Kalman filter (EKF) and the 

unscented Kalman filter (UKF) have shown good performance on structural parameter identification  

(Ebrahimian et al. 2015; Hoshiya and Saito 1984; Wu and Smyth 2007; Yang et al. 2006). Other approaches, 

such as Bayesian approach, have also been reported for FE model updating (Astroza et al. 2017). On the 

other hand, the frequency-domain approaches conduct model updating using frequency-domain structural 

properties extracted from measured structural responses, such as acceleration, velocity, and displacement. 

The extracted modal properties can be utilized to update the FE model so that the model generates similar 

modal properties. 

This paper focuses on frequency-domain approaches, which usually formulate an optimization problem that 

minimizes the difference between experimental and simulated modal properties. Early researchers in FE 

model updating field attempted to obtain better agreement between simulated resonance frequencies and 

those extracted from the field measurement data. Although these approaches are straightforward and easy 

to implement, only using the resonance frequency data could not ensure successful model updating (Salawu 

1997). Alternatively, other modal properties, such as mode shapes and modal flexibility, are included in the 

optimization objective function to utilize more information and thus provide better updating results (Jaishi 

and Ren 2006; Koh and Shankar 2003; Moaveni et al. 2013; Nozari et al. 2017; Sanayei et al. 2001; Zhang 

and Johnson 2013). To this end, the modal dynamic residual approach accomplishes FE model updating by 

forming an optimization problem that minimizes the residuals of the generalized eigenvalue equations in 

structural dynamics (Farhat and Hemez 1993; Kosmatka and Ricles 1999; Zhu et al. 2016). Despite 

previous efforts, these optimization problems in FE model updating are generally nonconvex. Most off-the-

shelf optimization algorithms, including gradient search methods and trust-region methods, can only find 

some local optima, while providing little or no knowledge on the global optimality. 

Although the optimization problems in model updating are generally nonconvex, the objective function, as 

well as equality and inequality constraints, can be formulated as polynomial functions.  Each polynomial 

function is a summation of monomial functions with the same or a lower degree.  For example, polynomial 
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function 1 − 4𝑥1 + 6𝑥2 + 8𝑥1
2 − 8𝑥1𝑥2 + 10𝑥2

2 has degree two, and has contribution from monomials 1, 

𝑥1, 𝑥2, 𝑥1
2, 𝑥1𝑥2, and 𝑥2

2, while each monomial has degree zero, one, or two.  If an optimization problem 

has polynomial objective and constraint functions, it becomes possible to find the global optimum of the 

nonconvex problem by sum-of-squares (SOS) optimization method. The SOS method tackles the problem 

by decomposing the original objective function into SOS polynomials to find the best lower bound of the 

objective function, which makes the problem more solvable. In recent years, extensive research efforts have 

been dedicated to SOS method for calculating the global bounds of polynomial functions (Nie et al. 2006; 

Parrilo 2003). It has also been reported that the dual problem of the SOS formulation provides information 

about the optimal solution of the original polynomial optimization problem (Henrion and Lasserre 2005; 

Lasserre 2001; Laurent 2009). Utilizing primal and dual problems of SOS optimization, the authors found 

that the global optimum can be reliably solved for nonconvex model updating problems using the modal 

dynamic residual formulation (Li et al. 2018). 

While our previous work shows the SOS optimization method is promising in solving nonconvex 

polynomial problems, the formulated optimization problem can be very expensive to solve. Therefore, only 

a 4-DOF lumped mass example was presented. For the model updating of larger structures, the number of 

variables or the degrees of the polynomial can become exponentially larger. To address this challenge, some 

researchers in mathematics community have recently investigated the so-called sparse SOS optimization 

method, which exploits the sparsity in the polynomial objective or constraint functions.  Here sparsity refers 

to the property of a polynomial function (of certain degree) that contains a relatively small number of 

monomials with nonzero coefficient.  For example, −4𝑥1 + 10𝑥2
2 can be considered as a sparse polynomial 

(function). The sparsity in objective or constraint polynomials is found to significantly reduce the 

computation load (Nie and Demmel 2008). Leveraging this recent progress, the paper exploits sparse SOS 

optimization method to reduce the number of optimization variables in the modal dynamic residual 

approach towards model updating. To this end, the paper demonstrates the model updating of a larger 2D 

truss structure with sparse SOS optimization. 
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The rest of this paper is organized as follows. Section 2 summarizes the formulation of the modal dynamic 

residual approach for model updating. Section 3 briefly reviews the SOS optimization method and its 

application on modal dynamic residual approach. Section 4 investigates the application of sparsity in SOS 

method to reduce the size of the corresponding optimization problem for model updating with modal 

dynamic residual approach. Section 5 shows numerical simulation of a 2D truss that demonstrates the 

advantage of the sparse SOS method. In the end, Section 6 provides a summary and discussion. 

2 Modal dynamic residual approach for FE model updating 

The purpose of FE model updating is to identify an accurate numerical model of an as-built preexisting 

structure using measurement data from the structure. For brevity, only stiffness values are considered as 

updating parameters in this paper (although the formulation can be easily extended for updating mass and 

damping). The stiffness parameters can be represented by updating variable 𝛉 ∈ ℝ𝑛𝛉, where each entry 𝜃𝑖 

denotes the relative change from the initial/nominal value of the i-th stiffness parameter being updated. For 

a linear elastic structure with 𝑁 degrees of freedom (DOFs), the overall stiffness matrix can be written as 

an affine matrix function of the updating variable 𝛉: 

𝐊(𝛉) = 𝐊0 +∑𝜃𝑖𝐊0,𝑖

𝑛𝛉

𝑖=1

 (1)   

where 𝐊0 ∈ ℝ𝑁×𝑁 denotes the initial stiffness matrix prior to model updating; 𝐊0,𝑖 ∈ ℝ𝑁×𝑁 denotes the i-

th (constant) stiffness influence matrix corresponding to the contribution of the i-th stiffness parameter 

being updated. Finally, 𝐊(𝛉):ℝ𝑛𝛉 → ℝ𝑁×𝑁 represents that the structural stiffness matrix is written as an 

affine matrix function of vector variable 𝛉 ∈ ℝ𝑛𝛉. When not all the stiffness parameters need updating, it 

is not required that 𝐊0 = ∑ 𝐊0,𝑖
𝑛𝛉
𝑖=1 . 

In theory, given the resonance frequency 𝜔𝑖 and mode shape vector 𝛙𝑖, no other value of the updating 

variable 𝛉  except the actual/correct value can provide the exact stiffness matrix 𝐊  that satisfies the 

generalized eigenvalue equation: 
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[𝐊(𝛉) − 𝜔𝑖
2𝐌]𝛙𝑖 = 0 (2)   

Based on this concept, the modal dynamic residual approach achieves model updating by minimizing the 

residual of the generalized eigenvalue equation of structural dynamics in Eq. (2). The residual can be 

calculated using the matrices generated by the FE model and modal properties obtained by experiment. The 

stiffness matrix 𝐊(𝛉) is parameterized by updating variable 𝛉. For brevity, the mass matrix 𝐌 is considered 

as accurate and requires no updating. The modal properties usually include the first few resonance 

frequencies (𝜔𝑖, 𝑖 = 1, 2, ⋯ , 𝑛modes) and corresponding mode shapes. Here, 𝑛modes denotes the number 

of measured modes. For mode shapes, the experimental results can only include the measured DOFs, 

denoted as 𝛙𝑖,m. As for entries in mode shapes corresponding to the unmeasured DOFs, 𝛙𝑖,u are unknown 

and needs to be treated as optimization variables. The optimization problem is formulated as follows to 

minimize modal dynamic residual 𝑟, where the optimization variables are 𝛉 and 𝛙𝑖,u: 

 minimize
𝛉,𝛙u

𝑟 = ∑ ‖[𝐊(𝛉) − 𝜔𝑖
2𝐌] {

𝛙𝑖,m

𝛙𝑖,u
}‖

2

2
𝑛modes

𝑖=1

 

(3)   

 subject to 𝐋 ≤ 𝛉 ≤ 𝐔 

Here ‖∙‖2 denotes the ℒ2-norm; constant vectors 𝐋 and 𝐔 denote the lower bound and upper bound for 

vector 𝛉 , respectively. Note that the sign “≤” is overloaded to represent entry-wise inequality. The 

formulation implies that both 𝐊(𝛉) and 𝐌 are reordered by the instrumented and un-instrumented DOFs in 

𝛙𝑖,m and 𝛙𝑖,u.   

3 Sum-of-squares (SOS) optimization method 

The sum-of-squares (SOS) optimization method is applicable to polynomial optimization problems. The 

core idea of this method is to represent nonnegative polynomials in terms of a sum of squared polynomials. 

Using the SOS method, many nonconvex polynomial optimization problems can be recast as convex SDP 

problems, for which the global optimum can be reliably solved. 

3.1 Nonnegative polynomials 

A monomial 𝑚(𝐱): ℝ𝑛 → ℝ is defined as the product form below: 
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𝑚(𝐱) = 𝑥1
𝛼1𝑥2

𝛼2⋯𝑥𝑛
𝛼𝑛 (4)   

where 𝛼𝑖 ∈ ℤ+ (the nonnegative integer set) is the exponent of each variable. The degree of a monomial is 

calculated as ∑ 𝛼𝑖
𝑛
𝑖=1 . With 𝑐𝑘 ∈ ℝ as the real-valued coefficient, a polynomial 𝑝(𝐱):ℝ𝑛 → ℝ is defined as 

a linear combination of monomials: 

𝑝(𝐱) = ∑ 𝑐𝑘𝑥1
𝛼𝑘,1𝑥2

𝛼𝑘,2⋯𝑥𝑛
𝛼𝑘,𝑛

𝑛𝑝

𝑘=1

 (5)   

where 𝑛𝑝 ∈ ℤ++ (the positive integer set) is the number of monomials; 𝛼𝑘,𝑖 ∈ ℤ+ is the exponent of each 

variable. The degree 𝑑 ∈ ℤ+  of the polynomial 𝑝(𝐱)  refers to the highest degree of its constituting 

monomials, 𝑑 = max
𝑘
(∑ 𝛼𝑘,𝑖

𝑛
𝑖=1 ).  

A large variety of optimization problems involve positive semidefinite (PSD) polynomials. A polynomial 

𝑝(𝐱) with even degree of 𝑑 = 2𝑡 is called PSD if 𝑝(𝐱) ≥ 0 for any 𝐱 ∈ ℝ𝑛. However, except for limited 

cases, e.g. 𝑛 = 1 or 𝑑 = 2, it is very difficult to test whether a given polynomial 𝑝(𝐱) is PSD or not. 

Alternatively, a sufficient condition for a polynomial to be PSD is that 𝑝(𝐱) can be expressed as a sum-of-

squares (SOS) form 𝑝(𝐱) = ∑ 𝑠𝑖
2(𝐱)𝑖  for a finite number of polynomials 𝑠𝑖: ℝ

𝑛 → ℝ. Consider the vector 

including all the base monomials of degree 𝑡 ∈ ℤ++ or lower: 

𝐳(𝐱) = (1, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑥1
2, 𝑥1𝑥2,⋯ , 𝑥𝑛−1𝑥𝑛

𝑡−1, 𝑥𝑛
𝑡 )T ∈ ℝ𝑛𝐳 (6)   

According to combination theory, the number of base monomials in 𝑛 variables of degree 𝑡 or lower is 

𝑛𝐳 = (
𝑛 + 𝑡
𝑛

) (Basu et al. 2003). Any polynomial, regardless being PSD or not, can be expressed in a 

quadratic form using the base monomial vector 𝐳(𝐱) (Lall 2011): 

𝑝(𝐱) = ∑ 𝑐𝑘𝑥1
𝛼𝑘,1𝑥2

𝛼𝑘,2 ⋯𝑥𝑛
𝛼𝑘,𝑛

𝑛𝑝

𝑘=1

= 𝐳(𝐱)T𝐖𝐳(𝐱) (7)   

where 𝐖 ∈ 𝕊𝑛𝐳 is a constant coefficient matrix determined by the coefficients 𝑐𝑘 and 𝕊 denotes the set of 

real symmetric matrices. The condition that 𝑝(𝐱) has a SOS decomposition turns out to be equivalent to 

that 𝐖 ≽ 0 is a positive semidefinite matrix (Nesterov 2000; Parrilo 2000): 
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𝑝(𝐱) =∑𝑠𝑖
2(𝐱)

𝑖

      ⟺        𝑝(𝐱) = 𝐳(𝐱)T𝐖𝐳(𝐱),𝐖 ≽ 0 (8)   

A polynomial 𝑝(𝐱) is called SOS if 𝑝(𝐱) has a SOS decomposition. Recall that  𝑡 is the highest degree 

among monomials in 𝐳(𝐱), 𝑑 is the even-valued degree of 𝑝(𝐱).  The equality 𝑝(𝐱) = 𝐳(𝐱)T𝐖𝐳(𝐱) thus 

requires 𝑑 = 2𝑡.  Testing whether a given polynomial 𝑝(𝐱) is SOS can be formulated as a SDP problem: 

 

 find 𝐖 

(9)    subject to 𝑝(𝐱) = 𝐳(𝐱)T𝐖𝐳(𝐱) 

𝐖 ≽ 0 

The identity in Eq. (9) is an equality constraint that holds for arbitrary 𝐱, which essentially says two sides 

of the equation should have the same coefficient 𝑐𝑘  for the same base monomial  

𝑚𝑘(𝐱) = 𝑥1
𝛼𝑘,1𝑥2

𝛼𝑘,2 ⋯𝑥𝑛
𝛼𝑘,𝑛. We use 𝑛𝑝 to represent the number of monomials in 𝑛 variables of degree 𝑑 =

2𝑡 or lower, i.e.  𝑛𝑝 = (
𝑛 + 𝑑
𝑛

).  Thus, the equality constraint is effectively a group of 𝑛𝑝 affine equality 

constraints on the entries of 𝐖 . We use 〈∙,∙〉  to represent the matrix inner product and denote 

𝐳(𝐱)T𝐖𝐳(𝐱) = 〈𝐳(𝐱)𝐳(𝐱)T,𝐖〉. These equality constraints can then be explicitly expressed using constant 

selection matrices 𝐀𝑘 ∈ 𝕊𝑛𝐳, which has one in entries where 𝑚𝑘(𝐱) appears in matrix 𝐳(𝐱)𝐳(𝐱)T and zero 

otherwise. In other words, 𝐀𝑘 selects 𝑚𝑘(𝐱) out from the matrix 𝐳(𝐱)𝐳(𝐱)T. Using the selection matrices, 

the feasibility problem in Eq. (9) can be equivalently rewritten as: 

 find 𝐖 

(10)    subject to 〈𝐀𝑘 ,𝐖〉 = 𝑐𝑘, 𝑘 = 1, 2, ⋯ , 𝑛𝑝 

𝐖 ≽ 0 

Illustration: An example is provided here to better illustrate SOS decomposition. Consider polynomials 

𝐱 = (𝑥1, 𝑥2)
T with 𝑛 = 2. The following SOS polynomial 𝑝(𝐱) has an even degree 𝑑 = 2: 

𝑝(𝐱) = 1 − 4𝑥1 + 6𝑥2 + 8𝑥1
2 − 8𝑥1𝑥2 + 10𝑥2

2 
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This polynomial contains 𝑛𝑝 = (
𝑛 + 𝑑
𝑛

)=6 monomials. The monomials and corresponding coefficients 

are shown below: 

𝑚1(𝐱) = 1 𝑚2(𝐱) = 𝑥1 𝑚3(𝐱) = 𝑥2 𝑚4(𝐱) = 𝑥1
2 𝑚5(𝐱) = 𝑥1𝑥2 𝑚6(𝐱) = 𝑥2

2 

𝑐1 = 1 𝑐2 = −4 𝑐3 = 6 𝑐4 = 8 𝑐5 = −8 𝑐6 = 10 

To express 𝑝(𝐱) in a quadratic form, the vector 𝐳(𝐱) including the base monomials is defined following Eq. 

(6). The highest degree of monomials in 𝐳(𝐱) is 𝑡 = 𝑑 2⁄ = 1, and the length 𝑛𝐳 = (
𝑛 + 𝑡
𝑛

) = 3. 

𝐳(𝐱) = (1, 𝑥1, 𝑥2)
T 

For illustrating the equality constraint in Eq. (10), take 𝑘 = 5 and the monomial 𝑚5(𝐱) = 𝑥1𝑥2  as an 

example. The constant selection matrix which selects 𝑚5(𝐱) = 𝑥1𝑥2  out from the matrix 𝐳(𝐱)𝐳(𝐱)T  is 

shown below: 

𝐀5 = [
0 0 0
0 0 1

0 1 0
] 

Solving the feasibility problem in Eq. (10), a particular solution is found as: 

𝐖 = [
1 −2 3

−2 8 −4

3 −4 10

] 

The entries 𝑊2,3 = 𝑊3,2 = −4 correspond to the coefficient 𝑐5 of monomial 𝑚5(𝐱) = 𝑥1𝑥2, which is why 

𝑐5 = 〈𝐀5,𝐖〉 = 𝑊2,3 +𝑊3,2 = −8. The positive semidefinite matrix 𝐖 can be decomposed as 𝐋T𝐋 by 

many decomposition methods, such as eigen-decomposition or Cholesky decomposition.  For example, 

Cholesky decomposition provides 

𝐋 = [
1 −2 3

0 2 1
] 

Finally, the polynomial can be written as the sum of squared polynomials: 

𝑝(𝐱) = 𝐳(𝐱)T𝐖𝐳(𝐱) = (𝐋𝐳(𝐱))
T
𝐋𝐳(𝐱) = (1 − 2𝑥1 + 3𝑥2)

2 + (2𝑥1 + 𝑥2)
2 

3.2 Polynomial optimization problem 

By the means of SOS decomposition, many difficult polynomial optimization problems can be relaxed to 

more solvable ones. Now consider a constrained polynomial optimization problem: 
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minimize
𝐱

𝑓(𝐱) = ∑ 𝑐𝑘𝑚𝑘(𝐱)

𝑛𝑓

𝑘=1

 

(11)   
 

subject to 𝑔𝑖(𝐱) =∑ℎ𝑖,𝑗𝑚𝑖,𝑗(𝐱)

𝑛𝑔𝑖

𝑗=1

≥ 0, 𝑖 = 1,2,⋯ , 𝑙 

where 𝑓(𝐱): ℝ𝑛 → ℝ  and 𝑔𝑖(𝐱):ℝ
𝑛 → ℝ  are polynomials with degree d and 𝑒𝑖 ∈ ℤ++ , respectively; 

𝑚𝑘(𝐱) is the k-th monomial in 𝑓(𝐱) and 𝑚𝑖,𝑗(𝐱) is the j-th monomial in 𝑔𝑖(𝐱). We denote the optimal 

objective function value of the problem Eq. (11) as 𝑓∗. In general, the optimization problem in Eq. (11) is 

a nonconvex problem. To cast this optimization problem to a convex one, we search for the best (maximum 

possible) lower bound 𝛾 of the objective function 𝑓(𝐱) over the feasible set 𝛀 = {𝐱 ∈ ℝ𝑛|𝑔𝑖(𝐱) ≥ 0, 𝑖 =

1, 2, ⋯ , 𝑙 }: 

 maximize
𝛾

𝛾 
(12)   

 subject to 𝑓(𝐱) − 𝛾 ≥ 0, ∀𝐱 ∈ 𝛀 

Note that 𝐱 is no longer an optimization variable for the problem in Eq. (12) but acts as a constraint on 𝛾. 

For each 𝐱 ∈ 𝛀,  𝑓(𝐱) − 𝛾 ≥ 0 is an affine, and thus convex constraint of 𝛾. Because the feasible set of 𝛾 

in Eq. (12) is the intersection of infinite number of convex sets on 𝛾, this optimization problem is convex 

on 𝛾 (Boyd and Vandenberghe 2004). Although the optimization problem has been converted to a convex 

one, it is still yet to implement the constraint that the polynomial 𝑓(𝐱) − 𝛾 is nonnegative for all 𝐱 ∈ 𝛀. To 

make the constraint easier to implement, the SOS decomposition is utilized. With the feasible set 𝛀 

involved, the sufficient condition for 𝑓(𝐱) − 𝛾 ≥ 0 over 𝛀 is that there exist SOS polynomials 𝑝0(𝐱) =

𝐳0(𝐱)
T𝐖𝐳0(𝐱), and 𝑝𝑖(𝐱) = 𝐳𝑖(𝐱)

T𝐐𝑖𝐳𝑖(𝐱), 𝑖 = 1, 2,⋯ , 𝑙, that satisfy the following condition: 

𝑓(𝐱) − 𝛾 = 𝑝0(𝐱) +∑𝑝𝑖(𝐱)𝑔𝑖(𝐱)

𝑙

𝑖=1

 (13)   

where 𝐖 ≽ 0 ∈ 𝕊+
𝑛𝐳0  and 𝐐𝑖 ≽ 0 ∈ 𝕊+

𝑛𝐳𝑖  are positive semidefinite matrices. To make sure the equality in 

Eq. (13) hold, we express both sides of the equation as polynomials with degree of 2𝑡 ≥ max(𝑑, 𝑒1,⋯ , 𝑒𝑙). 

Recall that 𝑑 is the degree of 𝑓(𝐱) and 𝑒𝑖 is the degree of 𝑔𝑖(𝐱). On the left-hand side, if the degree d of 
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𝑓(𝐱) − 𝛾  is smaller than 2𝑡 , the monomials with degree larger than d are simply assigned as zero 

coefficients. Thus, the total number of monomials from both sides of Eq. (13) is regarded as 𝑛𝑓 = (
𝑛 + 2𝑡
𝑛

). 

On the right-hand side of Eq. (13), to ensure the degree of 𝑝0(𝐱) is no more than 2𝑡,  we define the vector 

𝐳0(𝐱) = (1, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑥1
2, 𝑥1𝑥2, ⋯ , 𝑥𝑛−1𝑥𝑛

𝑡−1, 𝑥𝑛
𝑡 )T ∈ ℝ𝑛𝐳0  to represent all the base monomials of 

degree 𝑡 ∈ ℝ  or lower. The length of 𝐳0(𝐱)  is 𝑛𝐳0 = (
𝑛 + 𝑡
𝑛

) . To ensure the degree of each product 

𝑝𝑖(𝐱)𝑔𝑖(𝐱)  is no more than 2𝑡 , 𝐳𝑖(𝐱), 𝑖 = 1, 2,⋯ , 𝑙,  is defined as the vector including all the base 

monomials of degree 𝑡 − �̃�𝑖 or lower, where �̃�𝑖 = ⌈𝑒𝑖 2⁄ ⌉ represents the smallest integer larger than or equal 

to 𝑒𝑖 2⁄ . The length of 𝐳𝑖(𝐱) is 𝑛𝐳𝑖 = (
𝑛 + 𝑡 − �̃�𝑖

𝑛
). In this way, the optimization problem described in Eq. 

(12) can be relaxed to: 

maximize
𝛾,𝐖,𝐐𝑖

 𝛾  

(14)   subject to 𝑓(𝐱) − 𝛾 = 𝐳0(𝐱)
T𝐖𝐳0(𝐱) +∑(𝐳𝑖(𝐱)

T𝐐𝑖𝐳𝑖(𝐱)) 𝑔𝑖(𝐱)

𝑙

𝑖=1

 

 
𝐖 ≽ 0,𝐐𝑖 ≽ 0, 𝑖 = 1, 2,⋯ , 𝑙    

To express the equality constraints explicitly, we introduce the selection matrices 𝐀𝑘  and 𝐁𝑖,𝑘 

(𝑖 = 1, 2,⋯ , 𝑙) . 𝐀𝑘 ∈ 𝕊𝑛𝐳0  has one in entries where 𝑚𝑘(𝐱)  appears in matrix 𝐳0(𝐱)𝐳0(𝐱)
T  and zero 

otherwise; 𝐁𝑖,𝑘 ∈ 𝕊𝑛𝐳𝑖  has ℎ𝑖,𝑗  in entries where 𝑚𝑘(𝐱)  appears in matrix 𝑚𝑖,𝑗(𝐱)𝐳𝑖(𝐱)𝐳𝑖(𝐱)
T  and zero 

otherwise. Using the selection matrices, the optimization problem in (14) can be equivalently rewritten as: 

maximize
𝛾,𝐖,𝐐𝑖

 𝛾   

(15)   

subject to 〈𝐀1,𝐖〉 +∑ 〈𝐁𝑖,1, 𝐐𝑖〉
𝑙

𝑖=1
= 𝑐1 − 𝛾  

 
〈𝐀𝑘 ,𝐖〉 +∑ 〈𝐁𝑖,𝑘 , 𝐐𝑖〉

𝑙

𝑖=1
= 𝑐𝑘 𝑘 = 2, 3,⋯ , 𝑛𝑓  

 𝐖 ≽ 0,𝐐𝑖 ≽ 0 𝑖 = 1, 2, ⋯ , 𝑙 
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where 𝛾, 𝐖 and 𝐐𝑖 are optimization variables; 𝑛𝑓 = (
𝑛 + 2𝑡
𝑛

) from Eq. (13) is the number of monomials 

in 𝐱 ∈ ℝ𝑛 of degree less than or equal to 2𝑡. Thus, the original nonconvex polynomial optimization problem 

has been recast to a convex SDP problem. By solving the optimization problem in Eq. (15) formulated by 

the SOS method, the best (maximum possible) lower bound, i.e. the largest 𝛾∗ such that 𝛾∗ ≤ 𝑓∗, of the 

objective function in Eq. (11) is obtained. Although there may be cases that a suboptimal value of the 

objective function, i.e. 𝛾∗ < 𝑓∗, is attained, in practice the lower bound obtained by the SOS method usually 

coincides with the optimal value of the objective function, i.e. 𝛾∗ = 𝑓∗ (Parrilo 2003). 

The solution of the optimization problem formulated by SOS method in Eq. (15) provides the information 

on 𝛾∗ , the best (maximum possible) lower bound of objective function 𝑓(𝐱)  of original polynomial 

optimization problem. The optimal solution 𝐱∗ of the original polynomial optimization problem can be 

computed by solving the dual problem of the SOS formulation. The Lagrange dual function of problem in 

Eq. (15) is (𝐲, 𝐕, 𝐔𝑖) = sup
𝛾,𝐖,𝐐𝑖

ℒ(𝛾,𝐖,𝐐𝑖 ,  𝐲, 𝐕, 𝐔𝑖) , where 𝐲 , 𝐕 and 𝐔𝑖  are dual variables. It has been 

shown that if the optimal value of the original problem (Eq. (11)) and the SOS primal problem (Eq. (15)) 

coincide with each other, the optimal solution of the SOS dual problem can be calculated as: 

𝐲∗ = (1, 𝑥1
∗, ⋯ , 𝑥𝑛

∗ , (𝑥1
∗)2, 𝑥1

∗𝑥2
∗⋯, 𝑥𝑛−1

∗ (𝑥𝑛
∗)2𝑡−1, (𝑥𝑛

∗)2𝑡)T (16)   

In this way, the optimal solution 𝐱∗ of the original problem in Eq. (11) can be extracted as the second term 

through the (𝑛 + 1)-th term in 𝐲∗. We refer the interested readers to Lasserre (2001) and Henrion (2005) 

for details of the optimal solution extracting technique. Since practical SDP solvers, such as SeDuMi (Sturm 

1999), simultaneously solve both primal and dual problems, the optimal point 𝐱∗  can be computed 

efficiently. As all the functions in modal dynamic residual approach (Eq. (3)) are polynomials, the SOS 

optimization method can be directly implemented. In this way, the modal dynamic residual approach is 

recast as a convex problem.  
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4 Reduce the size of SDP problem in SOS optimization 

Although the SOS optimization method is powerful for solving polynomial optimization problems, the 

formulated SDP problem can be very expensive when 𝑛 or 𝑡 is large. To this end, the polynomial sparsity 

in the optimization problem can be utilized to reduce computation load.  A sparse polynomial function 

means the polynomial function contains a relatively small number of monomials, i.e. many monomials with 

the same or a lower degree have zero coefficient. This paper examines a specific sparsity pattern that the 

objective function consists of several polynomials only involving a small number of variables. Take the 

model updating formulation in Eq. (3) as an example. The objective function consists of 𝑛modes number of 

polynomials. Each polynomial involves only 𝛉  and one 𝛙𝑖,u , rather than 𝛉  and entire 𝛙u =

(𝛙1,u, 𝛙2,u,⋯ ,𝛙𝑛modes,u)
T

. As a result, we can represent each polynomial in SOS form, so that 

coefficients of the cross terms between 𝛙𝑖,u  and 𝛙𝑗,u, 𝑖 ≠ 𝑗, need not be considered. In this way, the 

number of optimization variables in SOS method can be significantly reduced. 

Now consider a constrained polynomial optimization problem, in which the objective function consists of 

several polynomials: 

 

minimize
𝐱

𝑓(𝐱) = ∑𝑓𝑞(𝐱)

𝑚

𝑞=1

= ∑∑𝑐𝑞,𝑘𝑚𝑞,𝑘(𝐱)

𝑛𝑓𝑞

𝑘=1

𝑚

𝑞=1

 

(17)   

 

subject to 𝑔𝑖(𝐱) =∑ℎ𝑖,𝑗𝑚𝑖,𝑗(𝐱)

𝑛𝑔𝑖

𝑗=1

≥ 0, 𝑖 = 1, 2, ⋯ , 𝑙 

Each polynomial 𝑓𝑞(𝐱) = ∑ 𝑐𝑞,𝑘𝑚𝑞,𝑘(𝐱)
𝑛𝑓𝑞
𝑘=1  has the quadratic form 𝑓𝑞(𝐱) = 𝐳𝑞(𝐱)

T𝐖𝑞𝐳𝑞(𝐱). Instead of 

representing 𝑓(𝐱) = ∑ 𝑐𝑘𝑚𝑘(𝐱)
𝑛𝑓
𝑘=1  as SOS directly, each 𝑓𝑞(𝐱) is represented as SOS. In this way, the 

redundant cross terms are excluded between variables in different 𝑓𝑞(𝐱). The degree of SOS polynomial 

𝑝𝑖(𝐱) = 𝐳𝑖(𝐱)
T𝐐𝑖𝐳𝑖(𝐱) corresponding to 𝑔𝑖(𝐱) is usually small and utilizing the sparsity of 𝑔𝑖(𝐱) is not as 

advantageous as the sparsity of 𝑓(𝐱). Thus, this paper does not consider the sparsity in 𝑔𝑖(𝐱). Using this 

sparse SOS method, the SDP problem then can be formulated as: 
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maximize
𝛾,𝐖𝑞,𝐐𝑖

 𝛾  

(18)   

subject to 𝑓(𝐱) − 𝛾 = ∑𝐳𝑞(𝐱)
T𝐖𝑞𝐳𝑞(𝐱)

𝑚

𝑞=1

+∑(𝐳𝑖(𝐱)
T𝐐𝑖𝐳𝑖(𝐱)) 𝑔𝑖(𝐱)

𝑙

𝑖=1

 

 
𝐖𝑞 ≽ 0, 𝑞 = 1, 2, ⋯ ,𝑚    

 
𝐐𝑖 ≽ 0, 𝑖 = 1, 2, ⋯ , 𝑙    

Note that although we represent each 𝑓𝑞(𝐱) as SOS separately, the equality constraint on coefficient 𝑐𝑘 =

∑ 𝑐𝑞,𝑘
𝑚
𝑞=1 , 𝑘 = 1,2,… , 𝑛𝑓, should hold for every monomial 𝑚𝑘(𝐱) in 𝑓(𝐱) − 𝛾.To express the optimization 

problem explicitly, selection matrices can be utilized. Similar to selection matrix 𝐀𝑘 defined in Section 3, 

for each polynomial 𝑓𝑞(𝐱) = ∑ 𝑐𝑞,𝑘𝑚𝑞,𝑘(𝐱)
𝑛𝑓𝑞
𝑘=1 , 𝐀𝑞,𝑘 ∈ 𝕊

𝑛𝐳𝑞  has 1 in entries where 𝑚𝑞,𝑘(𝐱) appears in 

matrix 𝐳𝑞(𝐱)𝐳𝑞(𝐱)
T and 0 otherwise. As we do not utilize the sparsity of polynomials 𝑔𝑖(𝐱), selection 

matrix 𝐁𝑖,𝑘 remains the same. The SDP problem formulated by sparse SOS method can be written as: 

maximize
𝛾,𝐖𝑞,𝐐𝑖

 𝛾   

(19) 

subject to ∑ 〈𝐀𝑞,1,𝐖𝑞〉
𝑚

𝑞=1
+∑ 〈𝐁𝑖,1, 𝐐𝑖〉

𝑙

𝑖=1
= 𝑐1 − 𝛾  

 
∑ 〈𝐀𝑞,𝑘 ,𝐖𝑞〉

𝑚

𝑞=1
+∑ 〈𝐁𝑖,𝑘 , 𝐐𝑖〉

𝑙

𝑖=1
= 𝑐𝑘 𝑘 = 2, 3,⋯ , 𝑛𝑓  

 𝐖𝑞 ≽ 0 𝑞 = 1, 2,⋯ ,𝑚   

 𝐐𝑖 ≽ 0 𝑖 = 1, 2, ⋯ , 𝑙   

Similar to the SOS method, the optimal solution 𝐱∗ of the original polynomial optimization problem can be 

computed by solving the dual problem of the sparse SOS formulation in Eq. (19). In addition, the dual 

problem of the sparse SOS formulation can be simultaneously solved by practical SDP solvers, and the 

optimal solution can be obtained using the same strategy described in Section 3.2.  
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5 Numerical Simulation 

5.1 Plane truss with dense measurement 

To validate the proposed sparse SOS method for model updating, a plane truss structure is simulated (Figure 

1). All member sections are set as 8×10-5 m2, and material density is set as 7,849 kg m3⁄ . The truss model 

has 10 nodes, and each node has a vertical and a horizontal DOF. Flexible support conditions are considered 

in this structure. Vertical and horizontal springs (𝑘1 and 𝑘2) are allocated at the left support, while a vertical 

spring (𝑘3) is allocated at the right support. The Young’s moduli of the truss bars are divided into three 

group, including 𝐸1 of the top-level truss bars, 𝐸2 of the diagonal and vertical truss bars, and 𝐸3 of the 

bottom-level truss bars. The mechanical properties of the structure are summarized in Table 1, including 

the initial/nominal values and the “as-built”/actual values.  

 

Figure 1. Plane truss structure with 8 nodes (16 DOFs) instrumented/measured 

 

Table 1. Model updating parameters 

Property Initial/Nominal “As-built”/Actual 
Ideal updating 

result for 𝜃𝑖 

Young’s moduli 

(×1011 N m2⁄ ) 

Top (𝐸1) 2 2.2 0.100 

Diagonal & Vertical (𝐸2) 2 1.8 −0.100 

Bottom (𝐸3) 2 1.9 −0.050 

Springs 

(×106 N m⁄ ) 

𝑘1  6 7 0.167 

𝑘2  6 3 −0.500 

𝑘3  6 5 −0.167 

 

In this study, modal properties of the “as-built” structure are directly used as “experimental” properties. It 

is assumed that all the nodes except the middle nodes are installed with sensors measuring both vertical and 

1.0 m

1.0 m

𝑘1

𝑘2

𝑘3measured node unmeasured node
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horizontal DOFs. Mode shapes extracted from the “experimental” data are only available at the measured 

DOFs. Considering practicality, it is assumed that only the first three modes are available for model 

updating. For each mode, the norm of the mode shape vector at measured DOFs, 𝛙𝑖,m, is normalized to be 

1. 

The stiffness updating variables 𝛉 ∈ ℝ6 correspond to three Young’s moduli in the structure (𝐸1, 𝐸2, and 

𝐸3) and the spring stiffness values (𝑘1, 𝑘2, and 𝑘3). The last column in Table 1 shows the ideal updating 

result for each 𝜃𝑖. Each unmeasured mode shape vector 𝛙𝑞,u ∈ ℝ4, 𝑞 = 1,2,3, contains the entries for the 

four unmeasured DOFs. All unmeasured entries in three mode shapes, 𝛙u = (𝛙1,u, 𝛙2,u, 𝛙3,u)
T
∈ ℝ12, are 

the optimization variables together with 𝛉. The total number of optimization variables is 𝑛 = 𝑛𝛉 + 𝑛𝛙u
=

18. The lower bound for 𝛉 is 𝐋 = −16×1 and the upper bound is 𝐔 = 16×1. This means the relative change 

to each stiffness updating parameter is allowed to be ±100%. To minimize modal dynamic residual 𝑟, the 

model updating problem can be formulated as follows with optimization variables 𝐱 = (𝛉,𝛙u). Note that 

here we equivalently rewrite the inequality constraints 𝐋 ≤ 𝛉 ≤ 𝐔  into polynomials of 𝜃𝑖  for directly 

applying SOS optimization method. 

minimize
𝐱=(𝛉,𝛙u) 

 𝑓(𝐱) = 𝑟 =∑‖[𝐊(𝛉) − 𝜔𝑞
2𝐌] {

𝛙𝑞,m

𝛙𝑞,u
}‖

2

23

𝑞=1

 

(20)   

subject to 1 − 𝜃𝑖
2 ≥ 0,  𝑖 = 1, 2, ⋯, 6 

As shown in Eq.(20), the objective function 𝑓(𝐱) consists of three polynomials 𝑓𝑞(𝐱), 𝑞 = 1,2,3. Each 

polynomial 𝑓𝑞(𝐱) = ‖[𝐊(𝛉) − 𝜔𝑞
2𝐌] {

𝛙𝑞,m

𝛙𝑞,u
}‖

2

2

 represents the modal dynamic residual from the q-th mode, 

with 𝑛𝑞 = 𝑛𝛉 + 𝑛𝛙𝑞,u
= 10 variables and degree of 𝑑𝑞 = 2𝑡𝑞 = 4. Each inequality constraint 𝑔𝑖(𝐱) = 1 −

𝜃𝑖
2 ≥ 0 is a polynomial with one variable 𝜃𝑖 and degree of  𝑒𝑖 = 2. 

To compare with the SOS optimization method, two local optimization algorithms are adopted to solve the 

optimization problem. The first local optimization algorithm is Gauss-Newton algorithm for nonlinear least 

squares problems (Nocedal and Wright 2006). Gauss-Newton algorithm is a modified version of Newton 
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algorithm with an approximation of the Hessian matrix by omitting the higher order term. Through the 

MATLAB command 'lsqnonlin' (MathWorks Inc. 2016), the second algorithm is the trust-region-

reflective algorithm (Coleman and Li 1996). The algorithm heuristically minimizes the objective function 

by solving a sequence of quadratic subproblems subject to ellipsoidal constraints. 

For a nonconvex problem, depending on different search starting points, a local optimization algorithm may 

converge to different locally optimal points. To show this phenomenon, 1,000 search starting points of the 

updating variables 𝐱 = (𝛉,𝛙u) ∈ ℝ18 are uniformly randomly generated in the feasible space 𝐋 ≤ 𝛉 ≤ 𝐔. 

Starting from each of the 1,000 points, both local optimization algorithms are used to search the optimal 

solution. The optimization problem is solved on a laptop PC with Intel® Core™ i7-6700HQ (2.60 GHz) 

and 8 GB RAM memory. Solving the optimization problem from 1,000 starting points by Gauss-Newton 

algorithm takes 15.865 seconds. On the other side, solving the optimization problem from the same 1,000 

starting points by trust-region-reflective algorithm takes 57.070 seconds. 

Figure 2 plots the optimized objective function values from 1,000 starting points by each local optimization 

algorithm. Figure 2(a) plots the performance of Gauss-Newton algorithm. The plot shows that many of the 

final solutions (965 out of 1,000) converge at the optimal point, with the value of objective function close 

to 0. However, some local optimal points are far away from the optimal point, and the achieved values of 

objective function are much higher than 0. For example, search from starting point #327 converges at a 

local minimum 𝐱GN327
∗  with the achieved objective function value of 1.269 as demonstrated in Figure 2(a). 

Figure 2(b) shows the performance of trust-region-reflective algorithm. Similar to Gauss-Newton algorithm, 

it turns out that the majority of the searches (955 out of 1,000) converge at the optimal point with the values 

of objective function close to 0. However, all the other 45 solutions end at a (same) local minimum 𝐱TR
∗  

with the values of objective function higher than 1.0. 
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(a) Gauss-Newton (b) Trust-region-reflective 

Figure 2. Optimized objective function value (i.e. optimal residual 𝑟∗ = 𝑓(𝐱∗)) for all search starting points 

 

Still using search No. 327 in the Gauss-Newton method as an example, we obtain the optimal 𝛉GN327
∗  from 

𝐱GN327
∗ . From 𝛉GN327

∗ , the updated Young’s moduli in the structure (𝐸1, 𝐸2, and 𝐸3) and the spring stiffness 

values (𝑘1 , 𝑘2 , and 𝑘3 ) are calculated and shown in Table 2. Similarly, 𝛉TR
∗  is obtained from 𝐱TR

∗  to 

calculate the updated stiffness parameters. The results show that the updated stiffness parameters at local 

minima are far away from the actual values. For example, the Young’s modulus 𝐸1 from 𝐱GN327
∗  is zero, 

meaning the gradient search stopped at a boundary point of the feasible set.  Meanwhile, the 𝐸3 from 𝐱TR
∗  

is also close to zero.  The table also lists the achieved objective function values, i.e. residual 𝑟 for these two 

cases, both higher than 1.0. 

Table 2. Updating results of different optimization methods 

 Residual 𝑟 
Young’s moduli (×1011 N m2⁄ ) Springs (×106 N m⁄ ) 

Top (𝐸1) Diagonal & Vertical (𝐸2) Bottom (𝐸3) 𝑘1 𝑘2 𝑘3 

Actual Value 0 2.2 1.8 1.9 7 3 5 

Gauss-Newton (𝐱GN327
∗ ) 1.269 0.000 0.210 0.065 2.534 0.464 2.123 

Trust-region-reflective (𝐱TR
∗ ) 1.047 1.433 1.043 0.060 4.874 0.876 3.631 

Regular SOS 5.09×10-9 2.200 1.800 1.900 7.000 3.000 5.000 

Sparse SOS 8.69×10-8 2.200 1.800 1.900 7.000 3.000 5.000 
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To further illustrate nonconvexity of the model updating problem in Eq. (20), the objective function value 

is evaluated along a line segment determined by the global minimum 𝐱∗  and the local minimum 𝐱TR
∗  

calculated by trust-region-reflective algorithm. Figure 3 plots the objective function value along this line 

segment (1 − 𝛼)𝐱TR
∗ + 𝛼𝐱∗, which is parameterized on 𝛼 ∈ [−0.1, 1.1]. The plot clearly shows that the 

linearly interpolated value between (𝐱TR
∗ , 𝑓(𝐱TR

∗ )) and (𝐱∗, 𝑓(𝐱∗)) lies below the graph of 𝑓(𝐱), which 

confirms that the function 𝑓(𝐱) is nonconvex. 

 

Figure 3. Objective function value (i.e. residual 𝑟 = 𝑓(𝐱)) on a line segment between a local minimum 𝐱TR
∗  and the 

global minimum 𝐱∗ 

 

Using SOS optimization method, the nonconvex problem in Eq. (20) is recast into a convex SDP problem 

(Eq. (15)). By solving the optimization problem in Eq. (15) and its dual problem, the optimal solutions can 

be calculated as 𝛾∗ = 0.000 for the primal problem and 𝐲∗ = (1, 0.100, − 0.100, − 0.050, 0.167, − 0.5, 

− 0.167, ⋯) for the dual problem (Eq. (16)). The optimal solution 𝛉∗ for the original problem in Eq. (3) is 

now easily extracted as (0.100, − 0.100, − 0.050, 0.167, − 0.5, − 0.167). Using the calculated 𝛉∗, the 

updated Young’s moduli in the structure (𝐸1, 𝐸2, and 𝐸3) and the spring stiffness values (𝑘1, 𝑘2, and 𝑘3) 

can be calculated and are shown in Table 2. The SOS optimization method recasts the original problem as 

a convex SDP problem and can reliably find the lowest minimum point, without searching from a large 

quantity of randomized starting points. Similarly, the stiffness values updated by sparse SOS method are 

𝐱TR
∗ 𝐱∗0 10.2 0.4 0.6 0.8

𝛼
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also calculated and listed in Table 2.  Both the regular and sparse SOS methods accurately identify the 

stiffness values to more than three digits after the decimal point.  The table also shows both SOS methods 

achieve a residual value (i.e. objective function value) of nearly zero, which is much lower than these from 

𝐱GN327
∗  and 𝐱TR

∗ . 

While achieving similar accuracy, the sparse SOS method saves a great amount of computation effort. For 

the problem in Eq. (20), there are 𝑛 = 18 optimization variables in total, and the degree of the objective 

function is 𝑑 = 2𝑡 = 4.  The problem has 𝑙 = 6 inequality constraints on 𝛉 in total. The degree of each 

inequality constraint is 𝑒𝑖 = 2, 𝑖 = 1,… ,6. To apply SOS optimization method, optimization variables 𝛾, 

𝐖, 𝐐𝑖 (𝑖 = 1, ⋯, 6) are introduced (Eq. (15)). With 𝑑 = 2𝑡 = 4 and 𝑛 = 18, the length of base monomial 

vector 𝐳0  is 𝑛𝐳0 = (
𝑛 + 𝑡
𝑛

) = (
18 + 2

18
)=190. For the symmetric matrix 𝐖, the number of optimization 

variables in 𝐖 is 𝑛𝐳0(𝑛𝐳0 + 1) 2⁄ = 190 × (190 + 1)/2 = 18,145. Similarly, with �̃�𝑖 = 1, the length of 

base monomial variables 𝐳𝑖  is 𝑛𝐳𝑖 = (
𝑛 + 𝑡 − �̃�𝑖

𝑛
) = (

18 + 2 − 1

18
) = 19. For each symmetric matrix 𝐐𝑖 , 

the number of optimization variables is 𝑛𝐳𝑖(𝑛𝐳𝑖 + 1) 2⁄ = 19 × (19 + 1)/2 = 190 . Recalling we have 

𝐐𝑖  (𝑖 = 1,… ,6), the total number of optimization variables for regular SOS method is thus 1 + 18,145+

6 × 190 = 19,286 (the first number 1 corresponds to scalar 𝛾). Solving the SDP problem formulated by 

regular SOS method consumes 4,107 seconds on a laptop PC with Intel® Core™ i7-6700HQ (2.60 GHz) 

and 8 GB RAM memory. 

On the other hand, sparse SOS method can reduce the computation load by eliminating those unnecessary 

monomials. The objective function in problem Eq. (20) consists of three polynomials, each of which 

contains 𝑛𝑞 = 10 variables and has degree of 𝑑𝑞 = 2𝑡𝑞 = 4. To apply sparse SOS optimization method, 

optimization variables 𝛾, 𝐖𝑞 (𝑞 = 1, 2, 3), 𝐐𝑖 (𝑖 = 1, ⋯, 6) are introduced (Eq. (19)). The variables 𝛾 and 

𝐐𝑖 (𝑖 = 1, ⋯, 6) share the same size as those in regular SOS method. With 𝑑𝑞 = 2𝑡𝑞 = 4 and 𝑛𝑞 = 10, the 

length of 𝐳𝑞  is 𝑛𝐳𝑞 = (
𝑛𝑞 + 𝑡𝑞
𝑛𝑞

) = (
10 + 2

10
)= 66 . For each symmetric matrix 𝐖𝑞 , the number of 
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optimization variables is 𝑛𝐳𝑞 (𝑛𝐳𝑞 + 1) 2⁄ = 66 × (66 + 1) 2⁄ = 2,211 . Thus, the total number of 

optimization variables for sparse SOS method is 1 + 3 × 2,211 + 6 × 190 = 7,774, which is approximately 

one third of regular SOS method. Furthermore, solving the SDP problem from sparse SOS method 

consumes only 15 seconds on the same PC. Note the reduction in computing time is exponentially less with 

the reduction of optimization variables. Table 3 briefly summarizes the comparison between regular and 

sparse SOS methods applied on this model updating problem. 

Table 3. Computation loads of regular SOS method and sparse SOS method 

 Size of 𝐖𝑞 # of 𝐖𝑞 Size of 𝐐𝑖 # of 𝐐𝑖 # of opt. variables Computation time (s) 

Regular SOS 190×190 1 19×19 6 19,286 4,107 

Sparse SOS 66×66 3 19×19 6 7,774 15 

 

5.2 Plane truss with sparse measurement 

To further validate the performance of sparse SOS method, the same plane truss structure but with less 

sensor measurement is studied. The dimensions, material properties, and boundary conditions of the 

structure are the same as those described in Section 5.2. However, it is now assumed that only eight DOFs 

are measured by sensors and the measurement layout is illustrated in Figure 4. Mode shapes extracted from 

the “experimental” data are only available at these eight measured DOFs. Furthermore, it is also assumed 

that only the first two modes (associated with the two lowest resonance frequencies) are available for model 

updating. 

 

Figure 4. Plane truss structure with 8 DOFs measured 

𝑘1

𝑘2

𝑘3
Horizontal measurement Vertical measurement
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The same stiffness updating variables, 𝛉 ∈ ℝ6 corresponding to three Young’s moduli in the structure (𝐸1, 

𝐸2, and 𝐸3) and the spring stiffness values (𝑘1, 𝑘2, and 𝑘3), are updated using the “experimental” modal 

properties. To formulate the optimization problem, all unmeasured entries in the two available mode shapes, 

𝛙u = (𝛙1,u, 𝛙2,u)
T
∈ ℝ24 , are the optimization variables together with 𝛉 . The total number of 

optimization variables is 𝑛 = 𝑛𝛉 + 𝑛𝛙u
= 30 , which is notably higher than the dense measurement 

example in previous Section 5.1. The same lower bound and upper bound for 𝛉 are adopted here, and the 

optimization problem can be formulated as follow: 

minimize
𝐱=(𝛉,𝛙u) 

 𝑓(𝐱) = 𝑟 =∑‖[𝐊(𝛉) − 𝜔𝑞
2𝐌] {

𝛙𝑞,m

𝛙𝑞,u
}‖

2

22

𝑞=1

 

(21)   

subject to 1 − 𝜃𝑖
2 ≥ 0,  𝑖 = 1, 2, ⋯, 6 

Using SOS optimization method, the nonconvex problem in Eq. (21) is recast into an equivalent convex 

SDP problem. In the SDP problem, optimization variables 𝛾, 𝐖, 𝐐𝑖 (𝑖 = 1, ⋯, 6) are introduced. With 𝑑 =

2𝑡 = 4 and 𝑛 = 30, the length of base monomial vector 𝐳0  is 𝑛𝐳0 = (
𝑛 + 𝑡
𝑛

) = (
30 + 2

30
)=496. For the 

symmetric matrix 𝐖, the number of optimization variables in 𝐖 is 𝑛𝐳0(𝑛𝐳0 + 1) 2⁄ = 496 × (496 + 1)/

2 = 123,256 . Similarly, with �̃�𝑖 = 1 , the length of base monomial vector 𝐳𝑖  is 𝑛𝐳𝑖 = (
𝑛 + 𝑡 − �̃�𝑖

𝑛
) =

(
30 + 2 − 1

30
) = 31 . For each symmetric matrix 𝐐𝑖 , the number of optimization variables is 

𝑛𝐳𝑖(𝑛𝐳𝑖 + 1) 2⁄ = 31 × (31 + 1)/2 = 496 . Recalling we have 𝐐𝑖  (𝑖 = 1,… ,6) , the total number of 

optimization variables for regular SOS method is thus 1 + 123,256+ 6 × 496 = 126,213. Due to more 

unmeasured mode shape entries, this number is significantly higher than the 19,286 SOS variables in 

previous Section 5.1. Solving the SDP problem formulated by regular SOS method consumes 457 hours 16 

minutes and 49 seconds on computing clusters using 16 CPUs and 84.56 GB RAM memory. Previous PC 

with 8 GB memory cannot support the high memory requirement needed by so many optimization variables. 

On the other hand, the proposed sparse SOS method can reduce the computation load significantly. The 

objective function in problem Eq. (21) consists of two polynomials, each of which contains 𝑛𝑞 = 18 
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variables and has degree of 𝑑𝑞 = 2𝑡𝑞 = 4.  To apply sparse SOS optimization method, optimization 

variables 𝛾, 𝐖𝑞  (𝑞 = 1, 2), 𝐐𝑖  (𝑖 = 1, ⋯, 6) are introduced. The variables 𝛾 and 𝐐𝑖  (𝑖 = 1, ⋯, 6) share 

the same size as those in regular SOS method. With 𝑑𝑞 = 2𝑡𝑞 = 4 and 𝑛𝑞 = 18, the length of 𝐳𝑞 is 𝑛𝐳𝑞 =

(
𝑛𝑞 + 𝑡𝑞
𝑛𝑞

) = (
18 + 2

18
)= 190. For each symmetric matrix 𝐖𝑞 , the number of optimization variables is 

𝑛𝐳𝑞 (𝑛𝐳𝑞 + 1) 2⁄ = 190 × (190 + 1) 2⁄ = 18,145. Thus, the total number of optimization variables for 

sparse SOS method is 1 + 2 × 18,145+ 6 × 496 = 39,267, which is approximately one third of the number 

123,256 from regular SOS method. Furthermore, solving the SDP problem from sparse SOS method 

consumes only 3 hours 13 minutes and 14 seconds on computing clusters using the same 16 CPUs, but 

requiring only 4.75 GB RAM memory. Table 4 briefly summarizes the comparison between regular and 

sparse SOS methods applied on this model updating problem. Sparse SOS method is again shown to 

significantly reduce the computation load. 

  Table 4. Computation load of regular SOS method and sparse SOS method 

 Size of 𝐖𝑞 # of 𝐖𝑞 Size of 𝐐𝑖 # of 𝐐𝑖 
# of optimization 

variables 
Computation time  

Regular SOS 496×496 1 31×31 6 123,256 457 h 16 m 49 s 

Sparse SOS 190×190 2 31×31 6 39,267 3 h 13 m 14 s 

 

Table 5 summarizes the updating results obtained from SOS optimization and sparse SOS optimization 

methods. Both methods can solve the model updating problem with less sensor measurement at acceptable 

accuracy.  

Table 5. Updating results for the structure with 8 DOFs measured 

Variables 
Ideal updating 

result for 𝜃𝑖 
Regular SOS method Sparse SOS method 

𝜃1 0.100 0.099 0.099 

𝜃2 −0.100 −0.101 −0.101 

𝜃3 −0.050 −0.051 −0.051 

𝜃4 0.167 0.165 0.166 

𝜃5 −0.500 −0.501 −0.500 

𝜃6 −0.167 −0.168 −0.167 
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6 Conclusion 

This paper investigates sparse SOS optimization method for FE model updating with modal dynamic 

residual formulation. The formulation entails an optimization problem with a polynomial objective function 

and polynomial inequality constraints. The SOS optimization method can recast such a nonconvex 

polynomial optimization problem into a convex SDP problem, which makes the optimization process 

tractable and efficient. In this paper, the sparsity in SOS optimization method is discussed and proposed for 

significantly reducing the computation load for FE model updating.  Numerical simulation on a plane truss 

structure is conducted to validate the proposed approach. It is shown that the proposed sparse SOS 

optimization method can reliably reach the global optimum while significantly reducing computation effort 

compared with regular SOS method. 
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