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ABSTRACT   

This research studies a substructure finite element model updating approach that requires vibration data from 

only part of a large structure (i.e. a substructure). Craig-Bampton transform is adopted to condense the residual 

structure using a limited number of dominant modal coordinates, while the substructure model remains at high 

resolution. To update the condensed model, physical parameters in the substructure and modal parameters of 

the residual structure are chosen as optimization variables; minimization of modal dynamic residuals from the 

eigenvalue equations in structural dynamics is chosen as the optimization objective. An iterative linearization 

procedure is adopted for efficiently solving the optimization problem. The proposed substructure model 

updating approach is validated with 1D, 2D and 3D examples. 

Keywords: finite element model updating, substructure modeling, modal dynamic residual, iterative 

linearization 

INTRODUCTION 

In order to simulate structural behavior under various loading conditions, finite element (FE) models are often 

constructed. However, predictions by FE models often differ from experimental results at the actual structure. 

The discrepancies are mainly caused by inaccuracies in FE models. For example, simplifications are usually 

adopted in FE modeling, such as idealized hinges and rollers, whereas the simplified conditions do not exist in 

reality. In addition, FE models often adopt nominal material properties, while the actual properties may be 



 
 

 

 

different in the field. Therefore, for higher simulation accuracy, experimental data collected from the actual 

structure in the field can be used to update the FE model parameters, which is known as model updating.   

Many FE model updating algorithms have been developed  and practically applied in the past few decades 

(Friswell and Mottershead 1995). Most algorithms can be categorized into two groups, i.e. frequency-domain 

approaches and time-domain approaches. Frequency-domain approaches update an FE model using vibration 

modal properties extracted from experimental measurement (such as natural frequencies, mode shapes, and 

damping ratios) (Farhat and Hemez 1993; Sanayei et al. 1999; Sanayei et al. 2001; Jaishi and Ren 2006). 

Compared to frequency-domain approaches, time-domain approaches deal with time history data directly, 

without the requirement for extracting modal properties (Hoshiya and Saito 1984; Loh and Tou 1995; Smyth 

et al. 1999; Smyth et al. 2002; Yang and Huang 2007a; Yang et al. 2007). When applied to a high-resolution 

FE model of a large structure, many existing approaches suffer computational and convergence difficulties. 

The reason is that both approaches operate on a complete FE model for the entire structure, which usually 

contains a very large number of degrees of freedom (DOFs). 

In order to alleviate the computational difficulty, particularly to accommodate data collected at dense 

measurement locations on large structures, substructure-based FE model updating can be pursued. Research 

activities have been reported on substructure model updating in both frequency domain and time domain. As 

an example of frequency domain approaches, Link adopted Craig-Bampton transform for substructure 

modeling, and updated the substructure model by minimizing difference between simulated and experimental 

modal properties (Craig and Bampton 1968; Link 1998; Craig 2000). Other studies used frequency spectra for 

substructure model updating, by minimizing difference between simulated and experimental spectra in certain 

frequency range (Zhao et al. 1995; Zhang and Johnson 2013a; Zhang and Johnson 2013b). In (Koh and Shankar 

2003), the interface force vector was estimated using multiple sets of measurement; the difference between 

multiple estimations was minimized with genetic algorithms for substructure model updating. Among time-

domain approaches, researchers applied the extended Kalman filter approach for substructure model updating 



 
 

 

 

of a simulated shear building model (Koh et al. 1991; Trinh and Koh 2012). A “quasi-static displacement” 

concept has been proposed for substructure formulation, so that only the acceleration time histories of the 

interface DOFs were required (Koh et al. 2003). Recently, a substructure model updating procedure is proposed 

using Bayes' theorem, without requiring interface measurements or excitation measurements (Yuen and 

Katafygiotis 2006). In addition, the sequential nonlinear least square estimation (SNLSE) method has been 

investigated for substructure model updating (Yang and Huang 2007b); the unknown interface coupling terms 

were treated as unknown forces, and sequentially updated in each time step with state variables and system 

parameters. Finally, a substructure isolation approach is developed based on virtual distortion method; the 

approach was validated numerically with a plane frame, and experimentally with a continuous beam (Hou et 

al. 2011).  

Overall, most of the existing substructure model updating approaches have only been validated with simplistic 

structural models, where 1D lumped spring-mass models are the most common. Many approaches are reported 

with convergence problems, either due to a bad initial guess of structural parameters or the high nonlinearity of 

the objective functions. This research investigates substructure updating using frequency domain data. To 

reduce computational difficulty, the entire structural model is divided into a substructure (currently being 

instrumented and to be updated) and the residual structure. Craig-Bampton transform is adopted to condense 

the residual structure using a limited number of dominant modal coordinates, while the substructure model 

remains at high resolution. To update the condensed model, physical parameters in the substructure and modal 

parameters of the residual structure are chosen as optimization variables; minimization of the modal dynamic 

residuals from the eigenvalue equations in structural dynamics is chosen as the optimization objective. An 

iterative linearization procedure is adopted for efficiently solving the optimization problem (Farhat and Hemez 

1993; Zhu and Wang 2012; Zhu et al. 2013).  

The rest of the paper is organized as follows. Section 2 presents the formulation of substructure modeling. 

Section 3 describes substructure updating through the optimization procedure of iteratively minimizing modal 



 
 

 

 

dynamic residuals. Section 4 shows three numerical examples (ranging from 1D to 3D) for validating the 

proposed approach. The performance of the proposed approach is compared with a conventional updating 

procedure that minimizes experimental and simulated modal property difference. Finally, a summary and 

discussion are provided. 

SUBSTRUCTURE MODELING 

This section presents the basic formulation for substructure modeling. The first subsection describes the model 

condensation strategy following Craig-Bampton transform. The second subsection describes the formulations 

of sensitivity matrices for model updating variables. 

Substructure Model Condensation 

Figure 1 illustrates the substructure modeling strategy following (Craig and Bampton 1968; Craig 2000) . 

Subscripts S, I, and R are used to denote DOFs associated with the substructure being analyzed, the interface 

nodes, and the residual structure, respectively. The block-bidiagonal structural stiffness and mass matrices,

S I Rand n n n K M  , can be assembled using original DOFs  TS I Rx x x x  .  
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Here KS and MS denote entries of the stiffness and mass matrices corresponding to the substructure; KR and 

MR denote entries corresponding to the residual structure; S
IIK  and S

IIM  denote the entries at the interface DOFs 

and contributed by members of the substructure; R
IIK and R

IIM  denote entries at the interface DOFs and 

contributed by members of the residual structure.  



 
 

 

 

Substructure DOFs xs

Residual DOFs xr

Interface DOFs xi

Substructure

 

Figure 1. Illustration of substructure modeling strategy 

Dynamic behavior of the residual structure can be approximated using Craig-Bampton transform (Craig and 

Bampton 1968; Craig 2000). The DOFs of the residual structure, R
R

nx  , are approximated by a linear 

combination of interface DOFs, I
I

nx  , and modal coordinates of the residual structure, R
qnq  . 

R I R R x Tx Φ q  (3) 

Here R I1
RR RI

n n  T K K   is the Guyan static condensation matrix; R

R 1,..., q

q

n n
n

   Φ φ φ    represents the 

mode shapes of the residual structure with interface DOFs fixed. Although the size of the residual structure 

may be large, the number of modal coordinates, nq, can be chosen as relatively small to reflect the first few 

dominant mode shapes only (i.e. nq << nR). The coordinate transformation is rewritten in vector form as: 
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Suppose RK and     I q I q

R

n n n n  M   denote the new stiffness and mass matrices of the residual structure after 

transformation: 
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where 1diag( , , )
qn γ    and  1diag( , , )

qn μ  are diagonal modal stiffness and modal mass matrices of 

the residual structure fixed at the interface. Note that due to the static condensation process in this 

transformation, the off-diagonal block entries of 
RK are zero. 

Upon transformation to the residual structure, a new set of stiffness matrix K and structural mass matrix M  of 

the entire structure can be assembled. In this assembly, contribution from the substructure, KS and MS 

(Equations (1) and (2)), remains unchanged. In other words, the substructure model remains at original high 

resolution, in order to enable accurate updating of substructure parameters. Because only a few dominant modal 

coordinates of the residual structure are adopted (i.e. nq << nR), dimension of K  and M  (both are nS + nI + nq) 

is condensed to be much smaller than original matrices K and M (nS + nI + nR).  
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Sensitivity of Updating Variables  

The updating variable for the substructure are physical parameters, e.g. elastic modulus and density of each 

substructure element. When the updating parameters are independent, the substructure matrices can be updated 

as functions of updating variables 1n α   and 1n β  . 

S S0 S0, S S0 S0,
1 1

( )       ( )
nn

j j j j
j j



 
 

    K α K K M β M M  (9) 

where S0K and S0M are the stiffness and mass matrices of the substructure and used as initial starting point in 

the model updating; 
j  and 

j  correspond to physical system parameters in the substructure to be updated; 

n  and n  represent the total number of corresponding parameters to be updated; S0, jK  and S0, jM  are constant 



 
 

 

 

matrices determined by the type and location of these parameters. Subscript “0” will be used hereinafter to 

denote variables associated with the initial structural model, which serves as the starting point for model 

updating.  For example, while S( )M β  contains the aggregated contribution of all structural members, each 

S0, jM  corresponds to the contribution of one mass parameter.  Although S0M  may be assembled with 

initial/nominal parameter values that are less accurate, it should still contain contribution from all members and 

have the similar pattern as S( )M β .  

Link described a model updating method for the condensed residual structure matrices (Link 1998). The 

matrices of the condensed residual structural model, RK and RM  in Equations (5) and (6), contains (nI + nq) × 

(nI + nq) number of entries. Assuming that physical changes in the original residual structure do not significantly 

alter the generalized eigenvectors of RK  and RM , only  (nI + nq) number of modal parameters are selected as 

updating variables for each condensed matrix of the residual structural model. As a result, I( ) 1qn n τ   is the 

updating variable vector for RK , and I( ) 1qn n η    for RM . 

I I

R R 0 R 0, R R0 R 0,
1 1

( )           ( )
q qn n n n

j j j j
j j

 
 

 

    K τ K K M η M M       (10)

where j  and j are the modal parameters to be updated; R0K and R0M are the initial stiffness and mass 

matrices of the condensed residual structure model; R 0, jK and R 0, jM , each a rank-1 square matrix, represent 

the constant sensitivity matrices formulated using modal back-transform: 

2 ,T ,T
R0, R0, R0, R0, R 0, R 0, R 0,        l l l l

j j j j j j j K φ φ M φ φ   (11)
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2
R0, j and R0, jφ  are the j-th generalized eigenvalue and mass-normalized eigenvector of the initial transformed 

residual structural model with free interface: 
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qn n   Φ M Φ I Φ K Φ    (13)

Using all model matrices to be updated, i.e. Equation (9) for substructure and Equation (10) for residual 

structure, the condensed entire structural model with reduced DOFs,  TS I Rx x q , can be updated with 

variables αj, βj, τj and ηj.  
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by defining 
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Similarly, the condensed mass matrix for the entire structure is written as: 
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where , jS , , jS , , jS and , jS  represent the constant sensitivity matrices corresponding to variables αj,  βj,  τj 

and ηj, respectively.  

SUBSTRUCTURE MODEL UPDATING 

To update the condensed structural model, a modal dynamic residual approach is proposed in this study. For 

performance comparison, a conventional modal property difference approach is also considered in this study. 

In both approaches, it is assumed that sensors are deployed on the substructure and interface DOFs at high 



 
 

 

 

density, so that mode shapes of the substructure can be identified from experimental data. Sensor 

instrumentation at the residual DOFs is not required. The first and second subsection describe the proposed 

modal dynamic residual approach and the conventional modal property difference approach, respectively. 

Modal Dynamic Residual Approach 

The proposed model updating approach attempts to minimize modal dynamic residuals of the generalized 

eigenvalue equation for the condensed structural model: 

   
m

u

2

m,2

, , , ,
u,1

L U L U L U L U

minimize         , ,

subject to        ;   ;   ;   

n
j

j
jj




 
    

 
       


α β τ η ψ

ψ
K α τ M β η

ψ

α α α β β β τ τ τ η η η

 
 (17)

where  denotes any vector norm; nm  denotes the number of  measured modes from experiments; j denotes 

the j-th modal frequency extracted from experimental data; m, jψ denotes the entries in the j-th mode shape that 

correspond to measured (instrumented) DOFs; u, jψ  correspond to unmeasured DOFs; The unmeasured DOFs 

in u, jψ  may include these in the substructure and these representing the residual structure; therefore, not all 

DOFs of the substructure have to be instrumented.   α,  β,  τ and η are the system parameters to be updated (see 

Equations (14) and (16)). Constants Lα , Lβ , Lτ  and Lη  denote the lower bounds for vectors α, β, τ and η, 

respectively; Uα , Uβ , Uτ and Uη  denote the upper bounds for vectors α, β, τ and η, respectively. Note that the 

sign “≤” in Equation (17) is overloaded to represent element-wise inequality.  

In summary, j and m, jψ are extracted using experimental data from the sensors deployed on the substructure 

and interface DOFs at high density, and thus, are constant in the optimization problem. Although j and m, jψ

are from the original structural matrices, they agree very closely to the resonance frequencies and mode shapes 

from the condensed structural matrices.  The differences are usually negligible for the modes with lowest 

frequencies, i.e. these practically measurable modes.  The optimization variables are α, β, τ, η and uψ . Equation 



 
 

 

 

(17) leads to a non-convex optimization problem that is generally difficult to solve. However, if mode shapes 

at unmeasured DOFs, uψ , were known, Equation (17) becomes a convex optimization problem. This is because 

given u, jψ  is constant, the expression     m,2

u,

, , j

j
j


 

    
 

ψ
K α τ M β η

ψ
   is an affine function on variables α,  β,  

τ and η. In addition, the composition of a norm function and an affine function remains convex (Berger 1990; 

Barvinok 2002; Boyd and Vandenberghe 2004). Therefore, the objective function in Equation (17), which is 

the summation of convex functions, remains convex (Boyd and Vandenberghe 2004; Zhu and Wang 2012). 

Besides, the lower and upper bound constraints on entries of α,  β,  τ and η provide a convex set.  When 

minimizing a convex objective function over a convex set, the optimization problem in Equation (17) becomes 

convex. Likewise, if system parameters (α,  β,  τ and η) were known, Equation (17) also becomes a convex 

optimization problem with variable uψ . Therefore, an iterative linearization procedure for efficiently solving 

the optimization problem is adopted in this study, similar to (Farhat and Hemez 1993). Figure 2 shows the 

pseudo code of the procedure. Each iteration step involves two operations, modal expansion and parameter 

updating. 

 

Figure 2. Pseudo code of the iterative linearization procedure 

(i) Modal expansion 

At each iteration step, operation (i) is essentially modal expansion for unmeasured DOFs, where system 

parameters (α,  β,  τ and η) are treated as constant. At the first iteration step, these parameter values are set to 

be zero. At later iteration steps, the parameter values are obtained from model updating results in the previous 

step. When model parameters are held constant, uψ becomes the only optimization variable in Equation (17). 

Regardless which vector norm function is adopted, the optimization problem remain convex and can be 

 start with α,  β,   τ and η = 0 (meaning M and K start with M0 and K0 ); 
 REPEAT { 
   (i)    hold α,  β,  τ and η  as constant and minimize over variable  ψu; 
       (ii) hold  ψu as constant and minimize over variables α,  β,  τ and η  ; 
 } UNTIL convergence; 



 
 

 

 

efficiently solved using off-the-shelf solvers such as CVX (Grant and Boyd 2014). When Euclidean norm (2-

norm) is adopted, the optimization problem, without constraints, is equivalent to a least square problem. The 

unknown part of the j-th experimental mode shape vector, u, jψ , can be obtained from following least-square 

solution. 

,mu ,mm

u, m,
,uu ,um

j j

j j
j j

   
    

   

D D
ψ ψ

D D
 (18)

where definition for 
jD  comes from the generalized eigenvalue formulation. 
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
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 

D D
D K α τ M β η

D D
   (19)

Here K  and M  are matrices assembled according to Equations (14) and (16). In operation (i), the matrices are 

constant because system parameters (α,  β,  τ and η)  are held constant.  

(ii) Parameter updating 

Operation (ii) at each iteration step is the updating of model parameters (α, β, τ and η), using the expanded 

complete mode shapes. Thus, 
uψ  is held as constant in operation (ii). Again, the optimization problem with α, 

β, τ and η as optimization variables can be efficiently solved for an arbitrary vector norm function in Equation 

(17). When 2-norm is adopted, the problem without constraints is equivalent to a least square form shown 

below.  
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where the matrices Pα, Pβ, Pτ and Pη are formulated as 
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Here , jS , , jS , , jS  and , jS  represent the constant sensitivity matrices from Equations (14) and (16); jψ is 

the j-th expanded mode containing both measured and unmeasured DOFs. 

As stated in the beginning of this section, Equation (17) leads to a non-convex optimization problem. Therefore, 

in general, no algorithm guarantees to find the exact global optimum (Berger 1990; Barvinok 2002; Boyd and 

Vandenberghe 2004). Although the performance of the iterative linearization procedure appears to be 

acceptable, future research is needed to identify the mathematical conditions that render a solution close to the 

global optimum 

Modal Property Difference Approach 

For comparison, substructure model updating is also performed through a widely used conventional approach 

that minimizes experimental and simulated modal property differences (Link 1998). The conventional model 

updating formulation aims to minimize the difference between experimental and simulated natural frequencies, 

as well as the difference between experimental and simulated mode shapes of the substructure.   

m
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α β τ η
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where FE
j and j represent the j-th simulated (from the condensed model in Equations (14) and (16)) and 

experimentally extracted frequencies, respectively; MACj represents the modal assurance criterion evaluating 

the difference between the j-th simulated and experimental mode shapes. Note that only mode shape entries 

corresponding to measured DOFs are compared (i.e. between FE
m, jψ  and m, jψ ). The optimization variables are 

α, β, τ, η.  The mode shapes at unmeasured DOFs, u, jψ , are not among the optimization variables for modal 



 
 

 

 

property difference approach, because MACj only compares the mode shapes at measured DOFs. A nonlinear 

least-square optimization solver, 'lsqnonlin' in MATLAB optimization toolbox (MathWorks Inc. 2011), 

is adopted to numerically solve the optimization problem minimizing modal property differences. The 

optimization solver seeks a minimum through Levenberg-Marquardt algorithm, which adopts a search direction 

interpolated between the Gauss-Newton direction and the steepest descent direction (Moré 1978).  

It should be noted that if all the stiffness and mass parameters in the substructure are updated simultaneously, 

neither the modal dynamic residual approach nor the modal property difference approach has a unique solution 

for the stiffness and mass parameters. The reason is that arbitrary scaling to the generalized eigenvalue equation 

(involving mass and stiffness matrices) does not affect the standing of the equation.  In other words, the matrix 

pair K and M have the same generalized eigenvalue solutions as 2K and 2M.  Therefore, some parameters 

(which oftentimes are mass parameters in which one has higher confidence) for at least part of the substructure 

should be regarded as constant and cannot be updated.  

NUMERICAL VALIDATION 

To validate the proposed modal dynamic residual approach for substructure model updating, numerical 

simulations are conducted. In each simulation example, the modal dynamic residual approach and modal 

property difference approach are compared.  For each approach, the updating is performed assuming only a few 

measured modes corresponding to the few lowest natural frequencies are available, as happens in practice.  The 

first subsection describes substructure model updating on a lumped spring-mass model. The second subsection 

describes a plane truss model. The last subsection describes a space frame model. 

Lumped Spring-Mass Model 

Figure 3 shows a 200-DOF lumped spring-mass model for validating the proposed substructure updating 

approach. In the initial model (as starting point of model updating), all the mass and spring stiffness values are 

set identically as 6kg and 35kN/m, respectively. To construct the actual model (as updating goal), damage is 



 
 

 

 

introduced to this model by reducing 10% of spring stiffness at k20, k30, k45, k50, k60, k62, k82, k100, k120, and k150. 

A substructure with DOFs from 41 to 54 ( 14 1
S

x  ) is selected for model updating. As a result, DOFs 40 and 

55 are interface DOFs ( 2 1
I

x  ). All other DOFs belong to the residual structure. The initial stiffness, actual 

stiffness, and expected model updating changes in the substructure are listed in TABLE 1. Note that two springs 

with stiffness loss, k45 and k50, are contained in the substructure, but most other stiffness losses occur in the 

residual structure. It is assumed all substructure and interface DOFs are instrumented with sensors for 

experimentally capturing substructure vibration modes. No measurement is required on the residual structure. 

Substructure DOFs

Residual DOFs Interface DOFs

... 40 41 55... 5654
...

199 2001 2 39

Residual DOFsfaf
 

Figure 3. Illustration of substructure selection; for the actual structure model (to be identified), 10% stiffness 
reduction is introduced to k20, k30, k45, k50, k60, k62, k82, k100, k120, and k150 as damage 

 
TABLE 1. Structural properties in the selected substructure  

Updating parameter k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55

Initial value (kN/m) 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
Actual value (kN/m) 35 35 35 35 31.5 35 35 35 35 31.5 35 35 35 35 35

Change (%) 0 0 0 0 -10 0 0 0 0 -10 0 0 0 0 0 
 

When formulating model condensation, dynamic response of the residual structure is approximated using 

twenty modal coordinates, i.e. 20qn   (Equation (3)). With 14 1
S

x   and 2 1
I

x  , the entire structural 

model is therefore condensed to 36 DOFs. Without loss of generality, accurate structural mass matrix is 

assumed to be known; therefore mass parameters β (Equation (16)) is not among the updating parameters. The 

updating variables are the stiffness parameters α (corresponding to relative changes ratio of k41, k42, ..., and k55 

in the substructure), and modal parameters of the residual structural with free interface (τ2, τ 3, ..., τ 22 and η1, η2, 

..., η22). Note that nI + nq = 22 and that the modal parameter τ1 is not included, because the first resonance 

frequency of the residual structure with free interface is zero (corresponding to free-body movement). As a 



 
 

 

 

result, the first modal correction matrix R 0,1K in Equation (14) is a zero matrix, and so is the corresponding 

sensitivity matrix ,1S . Using modal frequencies and substructure mode shapes of the actual structure with 

reduced stiffness ( j  and m, jψ ) as "experimental data", both the proposed modal dynamic residual approach 

and the conventional modal property difference approach are applied.  

TABLE 2 summarizes the updating results using the proposed modal dynamic residual approach for 

substructure model updating. With different numbers of measured modes available, ranging from three to six 

lowest natural frequencies, the updated values for k45 and k50 are exactly -10.0% and -10.0%. The updated 

values for all other ki are exactly zero, which implies no change in all other stiffness values in the substructure. 

Therefore, the updating of substructure parameters achieve the goal (shown in TABLE 1) and correctly identify 

the stiffness loss locations and degrees of stiffness loss.  Figure 4 plots the relative errors of the updating results, 

i.e. deviation of updated stiffness values from the actual values, for different numbers of available modes. The 

figure also shows that the updating results accurately identify all substructure stiffness parameters, because all 

the updating errors are less than 0.0005%.  

TABLE 2. Updated parameter changes (%) for substructure elements on the lumped spring-mass model by 
minimization of modal dynamic residuals 

Available 
modes 

k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 

3 modes 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 0.00
4 modes 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 0.00
5 modes 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 0.00
6 modes 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 -10.00 0.00 0.00 0.00 0.00 0.00

 

 
Figure 4. Relative errors of the updated parameters on the lumped spring-mass model by minimization of 

modal dynamic residuals 
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Similarly, TABLE 3 summarizes the updating results using the conventional modal property difference 

approach (Equation (22)). The overall model updating performance is obviously worse than the modal dynamic 

residual approach. Figure 5 shows the relative errors of the updating results, as compared to the actual values. 

The maximum relative error for conventional modal property difference approach is 3.3% for parameter k45 

(with three measured modes available). Therefore, the conventional approach shows worse performance than 

the proposed modal dynamic residual approach. 

TABLE 3. Updated parameter changes (%) for substructure elements on the lumped spring-mass model by 
minimization of modal property differences 

Available 
modes 

k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 

3 modes -0.10 0.03 -0.37 -1.93 -6.69 -1.84 -0.30 -0.28 -1.82 -6.83 -1.91 -0.33 0.09 0.09 -0.15
4 modes 0.25 0.32 0.37 -0.16 -9.50 -0.11 0.31 0.26 0.02 -9.73 0.05 0.23 0.14 0.17 0.14
5 modes 0.57 0.91 0.76 -0.64 -7.89 -0.56 0.89 0.88 -0.62 -7.70 -0.70 0.78 1.04 0.95 0.07
6 modes 0.61 1.32 1.35 1.33 -8.77 1.37 1.42 1.44 1.44 -8.66 1.47 1.54 1.50 1.54 1.73

 

 

Figure 5. Relative errors of the updated parameters on the lumped spring-mass model by minimization of 
modal property differences 

Plane Truss Model 

Figure 6 shows the plane truss model for validating the proposed substructure updating approach. The truss 

model has 26 nodes, and each node has two translational DOFs. Horizontal and vertical springs (kx1 and ky1) 

are allocated at the left support to simulate a non-ideal hinge, while a vertical spring (ky2) is allocated at the 

right support to simulate a non-ideal roller. TABLE 4 summarizes the structural properties of the model, 

including elastic modulus E1 of top-level truss bars, modulus E2 of diagonal and vertical bars, modulus E3 of 
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bottom bars, and three spring stiffness numbers. The table provides initial nominal values for all parameters, as 

starting point for model updating. The table also lists actual values, which ideally are to be identified. The 

relative changes from initial to actual values are also listed.  

1.0 m

ky1 ky2
kx1

Substructure 1.0 m

 

Figure 6. Illustration of substructure selection of a plane truss 

TABLE 4. Structural properties of the plane truss 

Updating 
parameter 

Steel elastic modulus (1011 N/m2 ) kx1 
(106 

N/m) 

ky1 
(106 

N/m) 

ky2 
(106 

N/m) Top (E1) 
Diag. & Vert. 

(E2) 
Bottom (E3) 

Initial value 2 2 2 5 5 5 
Actual value 2.2 2.1 1.9 2 7 7 
Change (%) 10 5 -5 -60 40 40 

 

A substructure containing first three truss units from left is selected for model updating (Figure 6). The selected 

substructure contains six substructure nodes and two interface nodes. Each node includes two translational 

DOFs. The substructure DOF vector is 12 1
S

x   and the interface DOF vector is 4 1
I

x  . It is assumed all 

substructure and interface DOFs are instrumented with sensors for experimentally capturing substructure 

vibration modes. No measurement is required on the residual structure. For modeling, dynamic response of the 

residual structure is approximated using ten modal coordinates, i.e. 10qn   in Equation (3). As a result, the 

entire structural model is condensed to nS + nI + nq = 26 DOFs (from 52 DOFs in the original structure). The 

substructure stiffness parameters (to be updated) include the three elastic moduli in the substructure (E1, E2, 

and E3), as well as the spring stiffness values at the left support (kx1 and ky1). Because the spring stiffness at the 

right support, ky2, only contributes to residual structure, ky2 cannot be updated. Instead, the residual structure is 

updated through modal parameters of the residual structure with free interface (τ2, τ 3, ..., τ 14 and η1, η2, ..., η14). 



 
 

 

 

Note that nI + nq = 14 and that the modal parameters τ1 is not included, because the first resonance frequency of 

the residual structure with free interface is zero, similar as the lumped spring-mass model in the last subsection.  

TABLE 5 summarizes the updating results using the proposed modal dynamic residual approach for 

substructure model updating. The results are presented in terms of relative change percentages from initial 

values. For every available number of modes, the updating parameter changes are close to the ideal percentages 

listed in TABLE 4. Figure 7 plots the relative errors of the updating results, i.e. deviation of updated stiffness 

values from the actual values, for different numbers of available modes. The figure shows that the updating 

results accurately identify all substructure properties, and the maximum updating error is a negligible 0.08% 

for parameter E1 (when only three modes are available).  

TABLE 5. Updated parameter changes (%) for substructure elements on the plane truss model by minimization 
of modal dynamic residuals 

Available 
modes 

Steel elastic modulus change (%) Change 
in kx1 
(%) 

Change 
in ky1 

(%) Top (E1) 
Diag. & Vert. 

(E2) 
Bottom 

(E3) 
3 modes 10.08 5.03 -5.02 -60.00 40.04 
4 modes 9.99 5.00 -5.00 -60.00 40.00 
5 modes 9.99 4.99 -4.98 -60.00 39.99 
6 modes 10.04 4.99 -4.98 -60.00 39.99 

 
 

 

Figure 7. Relative errors of the updated parameters on the plane truss model by minimization of modal 
dynamic residuals 

Similarly, TABLE 6 summarizes the updating results using the conventional modal property difference 

approach. The updated parameter changes are apparently different from the ideal percentages listed in TABLE 

4. Figure 8 shows the relative errors of the updating results, as compared to the actual values. The conventional 
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approach can update some structural properties to a fairly good accuracy, but the results are generally worse 

than the proposed modal dynamic residual approach. The maximum error for conventional modal property 

difference approach is -7.98% for parameter E1 (with five available modes). 

TABLE 6. Updated parameter changes (%) for substructure elements on the plane truss model by minimization 
of modal property differences 

Available 
modes 

Steel elastic modulus change (%) Change 
in kx1 
(%) 

Change 
in ky1 

(%) Top (E1) 
Diag. & Vert. 

(E2) 
Bottom 

(E3) 
3 modes 5.23 2.84 -7.86 -60.2 37.02 
4 modes 7.71 4.59 -4.58 -58.44 38.90 
5 modes 2.03 7.70 -5.88 -57.82 38.23 
6 modes 4.33 7.74 0.16 -55.43 41.11 

 

 

Figure 8. Relative errors of the updated parameters on the plane truss model by minimization of modal 
property differences 

Space Frame Model 

Figure 9 shows the simulation model of a space frame bridge. The space frame model contains 46 nodes, each 

node with six spatial DOFs. Although mainly a frame structure, the segment cross bracings in top plane and 

two side planes are truss members. Transverse and vertical springs (ky and kz) are allocated at both ends of the 

frame structure to simulate non-ideal boundary conditions. TABLE 7 summarizes the structural stiffness 

parameters of the model. The parameters are divided into three categories. The first category contains six 

parameters (starting from top in the table), which are elastic moduli of the frame and truss (diagonal bracings 

in top plane) members along the entire length of the frame structure. The second category contains ten 

parameters, which are the elastic moduli of truss members (diagonal bracings in two side planes) for different 
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segments. The third category contains stiffness parameters of the four types of support springs. TABLE 7 

provides initial (nominal) values for all parameters, as starting point for model updating. The table also lists 

actual values, which ideally are to be identified. Note that for demonstration, some actual values are larger than 

initial values, while others are smaller. The relative changes from initial to actual values, to be identified, are 

also listed. 

 
Figure 9.  Illustration of substructure selection of a space frame bridge 

TABLE 7. Structure stiffness parameters 

Updating parameters 
Initial 
value 

Actual 
value 

Change 
(%) 

Elastic moduli 
of members 

along the 
frame 

structure 
(kips/in2) 

Frame 
members 

E1  Longitudinal top chord 29,000 30,450 5 
E2  Longitudinal bottom chord 29,000 30,450 5 

E3  Vertical members 29,000 27,550 -5 
E4  Transverse top chord 29,000 26,100 -10 

E5  Transverse & diagonal bottom 
chord 

29,000 30,450 5 

Truss 
members E6  Diagonal bracings in top plane 29,000 27,550 -5 

Elastic moduli 
of  side-plane 

diagonal 
bracings (truss 
members) for 
each segment 

(kips/in2) 

ES2  2nd segment 29,000 26,100 -10 
ES3  3rd segment 29,000 26,100 -10 
ES4  4th segment 29,000 26,100 -10 
ES5   5th segment 29,000 27,550 -5 
ES6  6th segment 29,000 27,550 -5 
ES7  7th segment 29,000 27,550 -5 
ES8  8th segment 29,000 24,650 -15 
ES9  9th segment 29,000 26,100 -10 

ES10  10th segment 29,000 27,550 -5 
ES11  11th segment 29,000 27,550 -5 

Support 
springs 

(kips/in) 

ky1  Left transverse 200 140 -30 
kz1  Left vertical 500 800 60 

ky2  Right transverse 200 140 -30 
kz2  Right vertical 500 800 60 



 
 

 

 

A substructure containing first three segments from left is selected for model updating (Figure 9). The selected 

substructure contains 10 substructure nodes and 4 interface nodes. Since each node has six DOFs and the 

longitudinal DOFs of the two support nodes are constrained, the substructure DOF vector is 58 1
S

x   and the 

interface DOF vector is 24 1
I

x  . For practicality, it is assumed only translational DOFs of the substructure 

and interface nodes are instrumented with accelerometers for capturing substructure vibration modes; rotational 

DOFs are not measured. No measurement is required on the residual structure. For model condensation, 

dynamic response of the residual structure is approximated using twenty modal coordinates, i.e. nq = 20 in 

Equation (3). As a result, the entire structural model is condensed to nS + nI + nq = 102 DOFs (reduced from 

274 DOFs in the original structure).  

Figure 10 shows the detailed view of the substructure containing the first three segments. The substructure 

stiffness parameters (to be updated) include the five elastic moduli of the frame members (E1~E5), the elastic 

moduli of top bracing truss members (E6), the elastic moduli of side-bracing truss members at the 2nd and 3rd 

segments (ES2 and ES3), and the spring stiffness values at the left support (ky1 and kz1). On the other hand, the 

residual structure is updated through modal parameters of the residual structure with free interface (τ2, τ 3, ...,    

τ 44 and η1, η2, ..., η44). Note that nI + nq = 44 and that modal parameter τ1 is not included, similar as previous 

examples.  

 

Figure 10. Detailed view of the substructure showing stiffness parameters to be updated 



 
 

 

 

TABLE 8 summarizes the updating results using the proposed modal dynamic residual approach for 

substructure model updating. The results are presented in terms of relative change percentages from initial 

values. For every available number of modes, most of the updated parameter changes are close to the ideal 

percentages listed in TABLE 7. The updating results for E4, the elastic moduli of the transverse frame members 

in top plane, are between -5.90% (with 5 modes) and -5.48% (with four available modes). These results are 

most different from the actual/ideal change of -10%. The reason is this parameter is less sensitive to translational 

DOFs, which can be explained by a sensitivity analysis performed to each stiffness parameter perturbed around 

the initial parameter values. Due to page limit, Figure 11 shows the sensitivity plots of two updating parameters, 

E4 and E6. The objective function (Equation (17)) is calculated by changing the selected parameter from -20% 

to +20%, while keeping all other parameters at initial values. The plots show that the objective function varies 

within a smaller range (8825~8835) for E4, while within a much larger range (8782~8924) for E6. The 

comparison demonstrates that E4 is not a sensitive updating parameter. Figure 12 plots the relative errors of the 

updating results, i.e. relative difference of updated values from the actual parameter values, for different 

numbers of available modes. The figure shows that except for E4, the updating results accurately identify all 

other substructure stiffness parameters. In addition, the updating accuracy generally improves when more 

measured modes are available.  

TABLE 8. Updated parameter changes (%) for substructure elements on the space frame model by minimization 
of modal dynamic residuals 

Available 
modes 

Frame member Truss member Spring 
E1 E2 E3 E4 E5 E6 ES2 ES3 ky1 kz1 

3 modes 4.21 4.17 -5.61 -5.76 4.16 -6.24 -10.68 -10.94 -30.54 59.01 
4 modes 4.70 4.65 -5.08 -5.48 4.64 -5.61 -10.26 -10.61 -30.21 59.90 
5 modes 4.91 5.00 -5.05 -5.90 4.99 -5.16 -10.05 -10.48 -29.99 59.94 
6 modes 4.73 4.39 -5.10 -5.65 4.36 -6.39 -10.32 -12.11 -30.43 59.83 

 



 
 

 

 

   

Figure 11. Sensitivities of the updated parameters to the objective function 

 
Figure 12. Relative errors of the updated parameters on the space frame model by minimization of modal 

dynamic residuals 

TABLE 9 summarizes the updating results using the conventional approach minimizing modal property 

differences. Many of the updated/identified parameter changes are apparently different from the correct/ideal 

values listed in TABLE 7. Figure 13 plots the relative errors of the updating results. The figure shows that the 

updating results from conventional approach have much larger errors than the results from the proposed modal 

dynamic residual approach (Figure 12), particularly for stiffness parameters ky1 and kz1 of the support spring. 

The conventional approach minimizing modal property differences, when used for substructure model 

updating, cannot achieve a reasonable accuracy in this example.  

TABLE 9. Updated parameter changes (%) for substructure elements on the space frame model by minimization 
of modal property differences 

Available 
modes 

Frame member Truss member Spring 
E1 E2 E3 E4 E5 E6 ES2 ES3 ky1 kz1 

3 modes 3.21 5.89 -4.68 -2.40 1.77 -4.25 -3.12 -2.74 0.02 0.00 
4 modes 3.60 5.18 -5.71 -3.53 1.64 -5.60 -3.06 -2.97 0.02 0.02 
5 modes 4.78 6.83 -5.01 -4.87 3.73 -2.49 -1.49 -1.21 0.05 0.06 
6 modes 6.93 6.42 -5.58 -8.25 3.53 -4.69 -2.84 -2.72 -0.22 0.13 
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Figure 13. Relative errors of the updated parameters on the space frame model by minimization of modal 

property differences 

Discussion of Model Updating Results 

The numerical simulations in this section demonstrate that the proposed substructure updating approach 

minimizing modal dynamic residuals is capable of accurately identifying most parameters in the substructure. 

Meanwhile, when the conventional approach minimizing modal property differences is applied, the updating 

process either generates results with much lower accuracy (spring-mass and plane truss models), or cannot 

achieve a reasonable solution at all for some parameters (space frame model). The main reason is likely that 

the objective function in the modal property difference approach is less sensitive to minor changes in structural 

parameters. In addition, according to the numerical examples studied thus far, more measured modes usually 

help enable more accurate updating results. However, the mathematical conditions that render a solution close 

to the global optimum, or formulas that can gage the proximity to the global optimum (without knowing the 

solution in advance) would require much future research. 

It should be noted that the solutions given by the proposed modal dynamic residual approach still show small 

errors. The errors are mainly caused by the approximations made in the model condensation process for 

substructure model updating. First, the Craig-Bampton transform used in model condensation adopts the static 

condensation matrix as the transformation matrix from interface DOFs to residual DOFs (Equation (3)), which 

neglects interface dynamic contribution. Second, the Craig-Bampton transform uses only a few dominant 

modes describing dynamic behavior of the residual structure; higher-frequency modes are neglected. Third, 
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while updating modal parameters for the residual structure, it is assumed that potential physical parameter 

changes in the residual structure do not significantly alter the generalized eigenvectors of the residual structural 

matrices (Equation (11)). Nevertheless, the overall substructure updating performance through minimization of 

modal dynamic residuals is reasonably accurate. 

CONCLUSIONS AND FINDINGS 

This paper studies an iterative linearization procedure for substructure model updating, where the entire 

structural model is divided into the substructure (currently being instrumented and to be updated) and the 

residual structure.  Physical parameters in the substructure and modal parameters of the residual structure are 

chosen as optimization variables; minimization of the modal dynamic residuals is adopted as the optimization 

objective.  Following conclusions and findings are made from this research: 

 To make substructure model updating more feasible, Craig-Bampton transform is an effective method 

that can condense the residual structure using a limited number of dominant mode shapes, while the 

substructure model remains at high resolution. 

 Numerical studies demonstrate that the combination of Craig-Bampton transform and modal dynamic 

residual approach can successfully update the physical parameters in the substructure with acceptable 

accuracy. 

 Validated by 1D, 2D and 3D examples, the iterative linearization procedure proves effective in finding 

a solution to the optimization problem minimizing modal dynamic residuals.   
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