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ABSTRACT  

This research studies a substructure model updating approach. Requiring modal testing data from only part of a large 

structure (i.e. a substructure), finite element model parameters for the substructure can be updated.  Prior to updating, 

Craig-Bampton transform is adopted to condense the entire structural model into the substructure (currently being 

instrumented and to be updated) and the residual structure. Finite element model of the substructure remains at high 

resolution, while dynamic behavior of the residual structure is approximated using only a limited number of dominant 

mode shapes. To update the condensed structural model, physical parameters in the substructure and modal parameters 

of the residual structure are chosen as optimization variables; minimization of the modal dynamic residual is chosen as 

the optimization objective. An iterative linearization procedure is adopted for efficiently solving the optimization 

problem. The proposed substructure model updating approach is validated through numerical simulation with two plane 

structures. 

Keywords: finite element model updating, substructure updating, modal dynamic residual, iterative least square 

optimization 

 

1. INTRODUCTION  

In order to simulate structural behavior under various operational loading conditions, finite element (FE) models are 

often constructed. However, in most scenarios, there are usually evident discrepancies between simulation result and the 

actual structural behavior in the field. The discrepancies are mainly caused by limitations in FE models. For example, 

many simplifications are adopted in FE modeling, such as idealized hinges and rollers, whereas the simplifications 

introduce discrepancies from reality. Besides, FE models generally adopt nominal material properties, while the actual 

properties may have changed over time. Therefore, for higher simulation accuracy, it is essential to update the finite 

element model based on experimental measurements on the actual structure. 

Numerous FE model updating algorithms have been developed  and practically applied in the past few decades [1]. Most 

algorithms can be categorized into two groups, i.e. frequency-domain approaches and time-domain approaches. 

Frequency-domain approaches update an FE model using frequency-domain structural characteristics extracted from 

experimental measurement, such as vibration modes [2, 3]. Time-domain approaches directly utilize measured time 

histories for model updating [4, 5]. Nevertheless, when applied to a high-resolution FE model of a large structure, many 

existing algorithms suffer computational challenges and convergence problem. The difficulties come from the fact that 

most of the existing algorithms operate on an entire structural model with very large amount of degrees of freedom 

(DOFs). 

In order to address the computational difficulty, particularly to accommodate data collected at dense measurement 

locations on large structures, some research activities have been devoted to substructure model updating. As an example 

for frequency domain approaches, Link adopts Craig-Bampton transform for substructure modeling, and updates the 

substructure model by minimizing difference between simulated and experimental modal properties [6, 7]. Other 

researchers adopt frequency spectra for substructure identification, by minimizing difference between simulated and 

experimental acceleration spectra in certain frequency range [8-10]. In [11], interface force vectors are estimated using 

multiple sets of measurement; the difference between multiple estimations is minimized with genetic algorithms for 

substructure model updating. Among time-domain approaches, Koh et al. apply the extended Kalman filter for 

substructure model updating of a shear-frame structure [12]. Displacement, velocity, and acceleration time histories of 



 

 
 

 

the interface DOFs are required, which may not be practical. Later, Koh et al. improve the approach by adopting a 

“quasi-static displacement” concept, so that only acceleration data of the interface DOFs is required [13]. Trink and Koh 

follow the formulation in [12], and estimate interface displacement and velocity by numerical integration [14]. Another 

substructure identification is proposed by Tee et al., in the context of first and second order model identification in 

conjunction with observer/Kalman filter and eigensystem realization [15]. Yuen and Katafygiotis present a substructure 

identification procedure using Bayesian theorem, without requiring interface measurements or excitation measurements 
[16]. In addition, the sequential nonlinear least square estimation (SNLSE) method has been explored for substructure 

model updating [17]. The unknown interface coupling parts on the right hand of the equation of motion are treated as 

unknown forces, and updated in each time step sequentially with state variables and system parameters. Finally, Hou et 

al. has developed a substructure isolation approach based on virtual distortion method; the approach is validated 

numerically with a plane frame, and experimentally with a continuous beam [18].  

This research investigates substructure updating using frequency domain data. Craig-Bampton transform is adopted to 

partition a large structure into a substructure being analyzed and a residual structure containing the rest of the DOFs. 

Finite element model of the substructure remains at high resolution, while dynamic behavior of the residual structure is 

approximated using only a limit number of dominant mode shapes. As a result, the entire structure model is condensed. 

To update the condensed structural model, physical parameters in the substructure and modal parameters of the residual 

structure are chosen as optimization variables, and minimization of the modal dynamic residual is chosen as the 

optimization objective. An iterative linearization procedure is adopted for efficiently solving the optimization problem 

[3, 19, 20]. The approach is previously validated with a simple spring-mass model. This research attempts to validate the 

approach with more complicated plane structures.  

The rest of the paper is organized as follows. Section 2 presents the formulation of substructure modeling and model 

updating through modal dynamic residual approach. Section 3 describes numerical investigations on a plane truss and a 

plane portal frame. The performance of the proposed approach is compared with a conventional updating procedure 

minimizing experimental and simulated modal property difference. Finally, a summary and discussion are provided. 

 

2. SUBSTRUCTURE MODELING AND UPDATING 

This section presents the basic formulation for substructure updating. Section 2.1 describes substructure modeling 

strategy following Craig-Bampton transform. Section 2.2 describes substructure model updating through minimization 

of  modal dynamic residual.  

 

2.1 Substructure modeling  

Figure 1 illustrates the substructure modeling strategy following Craig-Bampton transform [6]. Subscripts s, i, and r are 

used to denote DOFs associated with the substructure being analyzed, the interface nodes, and the residual structure, 

respectively. The block-bidiagonal structural stiffness and mass matrices, K and M, can be assembled using original 

DOFs  
T

s i rx x x x . 

    
 

       

ss si

S S R
is ii ii ir

R

ri rr

        
        

               
                 

0 0 00 0 0 K K0 0
K

K K K0 0 0 0 K K
K

0 0 K K0 0 0 0 0 0

 (1) 

Substructure DOFs xs

Residual DOFs xr

Interface DOFs xi

Substructure

 

Figure 1. Illustration of substructure modeling strategy. 
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Here KS and MS denote entries of the stiffness and mass matrices corresponding to the substructure; KR and MR denote 

entries corresponding to the residual structure; S

iiK  and S

iiM  denote the entries at the interface DOFs and contributed by 

the substructure; R

iiK  and R

iiM  denote entries at the interface DOFs and contributed by the residual structure.  

The dynamic behavior of the residual structure can be approximated using Craig-Bampton formulation [6]. The DOFs of 

the residual structure, rn

r x , are approximated by a linear combination of interface DOFs, in

i x , and modal 

coordinates of the residual structure, qn

r q . 

r i r r x Tx Φ q  (3) 

Here 1

rr ri

 T K K  is the Guyan static condensation matrix; 
1,...,

qr n
 
 

Φ φ φ  represents the mode shapes of the residual 

structure with interface DOFs fixed. The eigenvalue equation providing the mode shapes  rΦ  and modal frequencies r  

can be written as 

 2

, 0,        1,...,r j rr rr j qj n   M K φ  (4) 

Although the size of the residual structure may be large, the number of modal coordinates, nq, can be chosen as relatively 

small to reflect the first few dominant mode shapes only (i.e. nq << nr). The coordinate transformation is rewritten in 

vector form as: 
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Suppose 
RK  and 

RM  denote the new stiffness and mass matrices of the residual structure after transformation:  

T

R RK Γ K Γ                   
T

R RM Γ M Γ  (6) 

Link  described a model updating method for both the substructure and the residual structure [7]. The substructure model 

is updated as 
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where 0SK and 0SM are the stiffness and mass matrices of the substructure and used as initial starting point in the model 

updating; j and j  correspond to physical system parameters to be updated, such as elastic modulus and density of 

each substructure element; n and n represent the total number of  corresponding parameters to be updated; 
0,S jK and 

0,S jM  are constant matrices determined by the type and location of these parameters. Subscript “0” will be used 

hereinafter to denote variables associated with the initial structural model, which serves as the starting point for model 

updating. 

The matrices of the condensed residual structural model, 
RK  and 

RM  in Eq.(6), each contains (ni + nq) × (ni + nq) 

number of entries. Assuming that physical changes in the residual structure do not significantly alter the generalized 

eigenvectors of 
RK  and 

RM , only  (ni + nq) number of modal parameters are selected as updating parameters for each 

condensed matrix of the residual structural model : 
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where 
j and 

j are the modal parameters to be updated; 
0RK and 

0RM are the initial stiffness and mass matrices of the 

condensed residual structure model; 
0,R jK and 

0,R jM  represent the constant correction matrices formulated using modal 

back-transform [7]. Detailed formulation can also be found in [20]. 

Using all model matrices to be updated, i.e. Eq. (7) for substructure and Eq. (8) for residual structure, the condensed 

entire structural model with reduced DOFs,  
T

s i rx x q , can be updated with variables αj, βj, ζj and ηj. For brevity, 

these variables will be referred to in vector form as 
nα , 

nβ , i qn n
ζ and i qn n

η . 
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where , jS , , jS , , jS and , jS  represent the sensitivity matrices corresponding to variables αj,  βj,  ζj and ηj, 

respectively.  

 

2.2 Substructure model updating through minimization of modal dynamic residual 

To update the substructure model, a modal dynamic residual approach is proposed in this study. It is assumed that 

sensors are deployed on the substructure and interface DOFs at high density, so that mode shapes in the substructure area 

can be identified from experimental data. Sensor instrumentation at the residual DOFs is not required. The model 

updating approach attempts to minimize modal dynamic residual of the generalized eigenvalue equation. 
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where  denotes any vector norm; nm  denotes the number of  measured modes from experiments; j denotes the j-th 

modal frequency extracted from experimental data; 
m, jψ denotes the entries in the j-th mode shape that correspond to 

measured (instrumented) DOFs; 
u, jψ  correspond to unmeasured DOFs; α,  β,  ζ and η are the system parameters to be 

updated (see Eq. (9) and (10)). Lα , Lβ , Lζ and Lη  denote the lower bounds for vectors α, β, ζ and η, respectively; Uα , 

Uβ , Uζ and Uη  denote the upper bounds for vectors α, β, ζ and η, respectively. Note that the sign “≤” in Eq. (11) is 

overloaded to represent element-wise inequality. In summary, 
j and  

m,jψ  are extracted from experimental data, and 

thus, are constant in the optimization problem. The optimization variables are α,  β,  ζ, η and 
uψ . Eq. (11) leads to a 

complex nonlinear optimization problem that is generally difficult to solve. However, if mode shapes at unmeasured 

DOFs, 
uψ , were known, Eq. (11) becomes a convex optimization problem[20, 21]. The optimization variables are 

system parameters (α,  β,  ζ and η), and the problem can be efficiently solved. Likewise, if system parameters (α,  β,  ζ 

and η) were known, Eq. (11) also becomes a convex optimization problem with variable 
uψ . Therefore, an iterative 

linearization procedure  for efficiently solving the optimization problem is adopted in this study, similar to [3]. Figure 2 

shows the pseudo code of the procedure. Each iteration step involves two operations, modal expansion and parameter 

updating. 

(i) Modal expansion 

At each iteration, the operation (i) is essentially modal expansion for unmeasured DOFs, where system parameters (α,  β,  

ζ and η) are treated as constant. At the first iteration step, these parameter values are based on initial estimation. At later 



 

 
 

 

iteration steps, the parameter values are obtained from model updating results in the previous iteration. When model 

parameters are held constant, 
uψ becomes the only optimization variable in Eq. (11). Arbitrary vector norm functions 

can be adopted, and the optimization problem can be conveniently coded and efficiently solved using off-the-shelf 

solvers such as [22]. When Euclidean norm (2-norm) is adopted, the optimization problem without constraints is 

equivalent to a least square form. The unknown part of the j-th experimental mode shape vector, 
u, jψ , is obtained from 

following least-square problem.  
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where definition for 
jD  comes from the generalized eigenvalue problem. 
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Here K  and M are matrices assembled according to Eq. (9) and (10). In operation (i), the matrices are constant because 

system parameters (α,  β,  ζ and η)  are held constant.  

(ii) Parameter updating 

The operation (ii) at each iteration is the updating of model parameters (α,  β,  ζ and η)  using the expanded complete 

mode shapes. Thus, 
uψ is held as constant in operation (ii). Again, the optimization problem with α,  β,  ζ and η as 

optimization variables can be efficiently solved for arbitrary vector norm function in Eq. (11). When 2-norm is adopted, 

the problem without constraints is equivalent to a least square form shown below.  
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Here , jS , , jS , , jS and , jS  represent the constant sensitivity matrices from Eq. (9) and (10).  jψ is the j-th expanded 

mode containing both measured and unmeasured DOFs.  
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3. NUMERICAL EXAMPLES 

To validate the proposed approach for substructure model updating, two numerical examples are studied. Section 3.1 

describes a plane truss example, and Section 3.2 describes a plane portal frame example. For comparison, substructure 

model updating is also performed using a conventional approach that minimizes experimental and simulated modal 

 

Figure 2. Pseudo code of the iterative linearization procedure. 

 start with α,  β,  ζ and η = 0 (meaning M and K start with M0 and K0 ) ; 

  REPEAT { 

            (i)  hold α,  β,  ζ and η  as constant and minimize over variable 
uψ ; 

           (ii)  hold 
uψ as constant and minimize over variables α,  β,  ζ and η  ;  

 } UNTIL convergence ;  

 



 

 
 

 

property difference [7]. The conventional model updating formulation aims to minimize the difference between 

experimental and simulated natural frequencies, as well as the difference between experimental and simulated mode 

shapes of the substructure.   
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where
FE

j and
j represent the j-th simulated (from the condensed model in Eq. (9) and (10)) and experimentally 

extracted frequencies, respectively; MACj represents the modal assurance criterion evaluating the difference between the 

j-th simulated and experimental mode shapes. Note that mode shape entries only corresponding to measured DOFs are 

compared (i.e. between FE

m, jψ  and 
m, jψ ). A nonlinear least-square optimization solver, ‘lsqnonlin’ in MATLAB 

toolbox [23], is adopted to numerically solve the optimization problem minimizing modal property difference. The 

optimization solver seeks a minimum through Levenberg-Marquardt algorithm, which adopts a search direction 

interpolated between the Gauss-Newton direction and the steepest descent direction [24].  

 

3.1 Plane truss structure 

Figure 3 shows the plane truss model for validating the proposed substructure updating approach. The truss model has 26 

nodes, and each node has two translational DOFs. Horizontal and vertical springs (kx1 and ky1) are allocated at the left 

support to simulate a non-ideal hinge, while a vertical spring (ky2)  is allocated at the right support to simulate a non-ideal 

roller. Table 1 summarizes the structural properties of the model, including elastic modulus E1 of top-level truss bars, 

modulus E2 of diagonal and vertical bars, modulus E3 of bottom bars, and three spring stiffness numbers. The table 

provides initial nominal values for all parameters, as starting point for model updating. The table also lists actual values, 

which ideally are to be identified. The relative changes from initial to actual values are also listed.  

A substructure containing first three truss units from left is selected for model updating (Figure 3). The selected 

substructure contains six substructure nodes and two interface nodes. Each node includes two translational DOFs, so the 

substructure DOFs 12 1

s

x  and the interface DOFs 4 1

i

x . It is assumed all substructure and interface DOFs are 

instrumented with sensors for experimentally capturing substructure vibration modes. No measurement is required on the 

residual structure. For modeling, dynamic response of the residual structure is approximated using ten modal 

coordinates, i.e. 10qn   in Eq.(3). As a result, the entire structural model is condensed to ns+ni+nq=26 DOFs (from 52 

DOFs in the original structure). Without loss of generality, accurate structural mass matrix is assumed to be known, so 

mass parameters β (Eq. (7)) is not among the updating parameters. The substructure stiffness parameters α (being 

updated) include the three elastic moduli in the substructure (E1, E2, and E3), as well as the spring stiffness values at the 

left support (kx1 and ky1). Because the spring stiffness at the right support, ky2, only contributes to residual structure, ky2 

1.0 m

ky1 ky2

kx1

Substructure 1.0 m

 

Figure 3.  Substructure modeling of a plane truss 

Table 1.  Structural properties 

Update 

parameter 

Steel elastic modulus 

(1011 N/m2 ) kx1 

(106 N/m) 

ky1 

(106 N/m) 

ky2 

(106 N/m) 
Top (E1) Diag. & Vert. (E2) Bottom (E3) 

Initial value 2 2 2 5 5 5 

Actual value 2.2 2.1 1.9 2 7 7 

Change (%) 10% 5% -5% -60% 40% 40% 

 



 

 
 

 

cannot be updated. Instead, the residual structure is updated through modal parameters of the residual structure with free 

interface (ζ2, ζ 3, ..., ζ 14 and η1, η2, ..., η14). Note that ni+nq = 14 and that the modal parameter ζ1 is not included, because 

the first resonance frequency of the residual structure with free interface is zero (corresponding to free-body movement). 

As a result, the first modal correction matrix 0,1RK in Eq.(8) is a zero matrix, and so is the corresponding sensitivity 

matrix 
,1S . Using modal frequencies and substructure mode shapes (

j  and 
m, jψ ) as "experimental data", both the 

proposed modal dynamic residual approach and the conventional modal property difference approach are applied for 

substructure model updating. For each approach, the updating is performed assuming different numbers of measured 

modes are available (i.e. modes corresponding to the 3~6 lowest natural frequencies). 

Table 2.  Updated parameter changes (%) for substructure elements by minimization of modal dynamic residual 

Stiffness 

change 

Steel elastic modulus change (%) Change in 

kx1 (%) 

Change in 

ky1 (%) Top (E1) Diag. & Vert. (E2) Bottom (E3) 

3 modes 10.08 5.03 -5.02 -60.00 40.04 

4 modes 9.99 5.00 -5.00 -60.00 40.00 

5 modes 9.99 4.99 -4.98 -60.00 39.99 

6 modes 10.04 4.99 -4.98 -60.00 39.99 

 

 

Figure 4.  Relative errors of the updated parameters by minimization of modal dynamic residual 

 
Table 3.  Updated parameter changes (%) for substructure elements by minimization of modal property difference 

Stiffness 

change 

Steel elastic modulus change (%) Change in 

kx1 (%) 

Change in 

ky1 (%) Top (E1) Diag. & Vert. (E2) Bottom (E3) 

3 modes 5.23 2.84 -7.86 -60.2 37.02 

4 modes 7.71 4.59 -4.58 -58.44 38.90 

5 modes 2.03 7.70 -5.88 -57.82 38.23 

6 modes 4.33 7.74 0.16 -55.43 41.11 

 

 

Figure 5.  Relative errors of the updated parameters by minimization of modal property difference 

 

 

 

-0.05

0

0.05

0.1

R
e

la
ti
v
e
 e

rr
o

r 
(%

)

 

 

E
1

E
2

E
3

k
x1

k
y1

3 modes

4 modes

5 modes

6 modes

-10

-5

0

5

R
e

la
ti
v
e
 e

rr
o

r 
(%

)

 

 

E
1

E
2

E
3

k
x1

k
y1

3 modes

4 modes

5 modes

6 modes



 

 
 

 

Table 2 summarizes the updating results using the proposed modal dynamic residual approach for substructure model 

updating. The results are presented in terms of relative change percentages from initial values. For every available 

number of modes, the updating parameter changes are close to the ideal percentages listed in Table 1. Figure 4 plots the 

relative errors of the updating results, i.e. deviation from the actual values, for different number of available modes. The 

figure shows that the updating results accurately identify all substructure properties, and the maximum updating error is 

a negligible 0.08% for parameter E1 (when only three modes are available).  

Similarly, Table 3 summarizes the updating results using the conventional modal property difference approach. The 

updated parameter changes are apparently different from the ideal percentages list in Table 1. Figure 5 shows the relative 

errors of the updating results, as compared to the actual values. The conventional approach can update some structural 

properties to a fairly good accuracy, but the results are generally worse than the proposed modal dynamic residual 

approach. The maximum error for conventional modal property difference approach is -7.98% for parameter E1 (with 

five available modes). Figure 4 and Figure 5 also show that using either the proposed or the conventional approach, the 

updating accuracy does not monotonically decrease when number of available modes increases. This is probably caused 

by the approximations made in the formulation for substructure model updating. First, the Craig-Bampton transform 

used for model condensation (Eq.(3)) adopts static condensation matrix as the transformation matrix for interface DOFs 

to residual DOFs, which neglects interface dynamic contribution. Second, the Craig-Bampton transform uses only a few 

dominant modes describing dynamic behavior of the residual structure. Third, while updating modal parameters for the 

residual structure, it is assumed that physical parameter changes in the residual structure do not significantly alter the 

generalized eigenvectors of the residual structural matrices (Eq. (8)). These assumptions may introduce more inaccuracy 

to the updating process when higher modes are involved. 

 

3.2 Plane portal frame structure 

Figure 6 shows the plane portal frame model. The frame model has 42 elements and 131 DOFs in total. The portal frame 

has a hinge support on each side. Distinct elastic moduli are assigned along frame members as actual values (Figure 6). 

For example, lower-left corner of the substructure has four elements with the same modulus 0.8E. The upper eight 

elements at left column at left column have the same modulus 1.0E. In the initial model as starting point of model 

updating,  it is assumed that the same elastic modulus (E) is assigned to all elements.  

A substructure at the upper right corner, containing 14 elements, is selected for model updating. The selected 

substructure contains 13 substructure nodes and 2 interface nodes. Each node has two translational DOFs and one 

rotational DOF, so the substructure DOFs 39 1

s

x  and the interface DOFs 6 1

i

x . It is assumed only translational 

DOFs at substructure and interface nodes are instrumented with accelerometers for experimentally capturing 

substructure vibration modes; rotational DOFs are not measured. Again, no measurement is required on the residual 

structure. Dynamic response of the residual structure is approximated using ten modal coordinates, i.e. 10qn   in 

Eq.(3). As a result, the entire structural model is condensed to ns+ni+nq=55 DOFs (from 131 DOFs in the original 

0.914 m 
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1.524 m (60 in)
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Figure 6.  Substructure modeling of a plane portal frame 

 



 

 
 

 

structure). Similar to the plane truss example, mass parameters β is not among the updating variables. The selected 

updating parameters are the physical parameters α (the 14 different elastic moduli of the 14 substructure elements), and 

modal parameters of the residual structural with free interface (ζ3, ζ 4, ..., ζ 16 and η1, η2, ..., η16). Note that ni+nq = 16 and 

that the modal parameters ζ1 and ζ2  are not included, because the first two resonance frequencies of the residual structure 

with free interface are zero similar as in Section 3.1. Again, for each substructure model updating approach, the updating 

is performed assuming different numbers of measured modes are available (i.e. modes corresponding to the 3~6 lowest 

natural frequencies).  

Table 4 summarizes the updating results using the presented modal dynamic residual approach for substructure model 

updating. The results are presented in terms of relative change percentage from initial values. Similar to the truss 

Table 4. Updated parameter changes (%) for substructure elements by minimization of modal dynamic residual 

Stiffness 

changes (%) 
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

3 modes 10.59 10.29 -29.92 -29.93 -29.95 10.08 10.05 10.06 10.04 10.06 -9.97 -9.95 -9.95 -9.95 

4 modes 14.12 13.21 -28.63 -28.62 -28.82 11.86 11.69 11.73 11.64 11.69 -8.66 -8.58 -8.58 -8.53 

5 modes 10.67 10.60 -29.94 -29.89 -29.97 10.10 10.01 10.07 10.02 10.05 -9.98 -9.96 -9.98 -10.02 

6 modes 13.16 12.46 -29.08 -29.07 -29.30 10.98 10.84 10.78 10.70 10.67 -9.47 -9.48 -9.47 -9.41 

 

 

Figure 7.  Relative errors of the updated elastic moduli by minimization of modal dynamic residual 

 
Table 5. Updated parameter changes (%) for substructure elements by minimization of modal property difference 

Stiffness 

changes (%) 
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

3 modes -0.96 -2.18 -3.41 -5.62 -4.26 -2.52 0.02 1.81 2.07 1.14 -0.39 -1.75 -2.04 -1.29 

4 modes 0.42 0.05 -0.26 -1.25 -0.82 -1.50 -1.26 -0.48 -0.17 0.43 0.48 0.44 -0.43 -0.61 

5 modes 1.15 -0.88 -4.18 -10.79 -10.02 -7.00 -2.31 2.46 0.94 -4.88 -9.78 -6.62 -2.99 0.11 

6 modes 4.85 0.28 -1.91 -3.83 -4.49 -2.09 -0.68 -0.56 0.45 -0.02 -1.80 -1.41 -0.27 -1.14 

 

 

Figure 8.  Relative errors of the updated elastic moduli by minimization of modal property difference 
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example, for every available number of modes, the updating parameter changes are fairly close to the ideal percentages 

that can be easily calculated from Figure 6, element by element in the substructure. For example, the correct/ideal 

change should be 10% for E1, 10% for E2, -30% for E3, ect. Figure 7 plots the relative errors of the updating results as 

compared to the actual values, for different number of available modes. The proposed approach can correctly identify 

most structural parameters. The larger errors are all with E1 and E2, which are close to an interface node. The maximum 

error is 4.12% (when 4 modes are available), which is higher than the error for the truss structure. Nevertheless, in most 

scenarios, the majority of the parameters can be identified at less than 2% error. Note that in this example, only 

translational DOFs of the substructure and interface nodes are measured; rotational DOFs are unmeasured as commonly 

encountered in practice. While in plane truss example in Section 3.1, all DOFs on substructure and interface nodes are 

measured. This can be the reason that the results in frame example are less accurate than the results in truss example.  

Table 5 summarizes the updating results using the conventional modal property difference approach. The updated 

parameter changes are apparently different from the correct/ideal values. Figure 8 plots the relative errors of the updating 

results as compared to the actual values. The figure shows that the updating results from conventional approach have 

much larger errors than the results from the proposed modal dynamic residual approach (Figure 7). It can be concluded 

that the conventional approach minimizing modal property difference when used for substructure model updating cannot 

achieve a reasonable accuracy in this example.  

 

4. SUMMARY & CONCLUSION 

 

This paper studies substructure model updating through minimization of modal dynamic residual. Craig-Bampton 

transform is adopted to condense the entire structural model into the substructure (currently being instrumented and to be 

updated) and the residual structure. Finite element model of the substructure remains at high resolution, while dynamic 

behavior of the residual structure is approximated using only a limited number of dominant mode shapes. To update the 

condensed structural model, physical parameters in the substructure and modal parameters of the residual structure are 

chosen as optimization variables; minimization of the modal dynamic residual is chosen as the optimization objective. 

An iterative linearization procedure is adopted for efficiently solving the optimization problem. The presented 

substructure updating method is validated through a plane truss example and a plane portal frame example. The 

proposed approach accurately identifies all structural parameters for the truss example, and most of the parameters for 

the frame example. For comparison, a conventional modal property difference approach is also applied, and shows much 

lower accuracy than the proposed modal dynamic residual approach. Future research will continue to investigate the 

substructure model updating approach on more complicated structural models, through both simulations and 

experiments. 
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