Survey and Introduction to Focused Section on Mechatronics for Sustainable and Resilient Civil Infrastructure

Abstract—The application of mechatronics in civil engineering has increased the sustainability and resilience of large-scale civil infrastructure, whose safe operation is among the utmost important issues concerning human society and our daily lives. Meanwhile, challenges faced in large-scale infrastructure applications bring about interesting and new topics for research in mechatronics. This paper firstly reports a brief survey of the recent research progresses on the construction automation in civil engineering, intelligent sensing, structural monitoring and health management, and feedback control of structural vibration. Next, a brief highlight to eight papers in this "Focused Section on Mechatronics for Sustainable and Resilient Civil Infrastructure" is provided. Finally, some latest topics, challenges, and the future trends of mechatronics application in civil infrastructure are discussed.

Index Terms—sensing, control, actuator, field robot, vibration, construction equipment, civil infrastructure.

I. INTRODUCTION

CUSTAINABILITY and resilience of large-scale civil **D** infrastructure are of utmost importance concerning human society and our daily lives [1]. Meanwhile, the demands for large-scale civil infrastructure have also created a large numbers of applications for mechatronics. For example, in the past few decades, intelligent machinery(with field bus controller network, GPS positioning and measuring, load-sensing energy type of electro-hydraulic control, sensors, field robotics, and smart structures in field and service) has played an important role in construction automation [2]-[5], vibration control [6]-[8], and active maintenance [9], [10] of large-scale civil structures, such as bridge, airport, high-speed railway, etc. As another example, the safety inspection of large civil structures has also adopted a variety of advanced inspection techniques such as bio-inspired robot inspection, image based structural inspection, sensor network, and multi-sensor data fusion. Furthermore, the application of mechatronics in civil engineering has propelled the development of mechatronics and control technologies, and has formed a cross-disciplinary field of smart structural technology. Sensing and feedback control is applied to civil structures for reducing excessive vibrations during strong dynamic excitation such as earthquakes, typhoons and other natural disasters.

Mechatronics applications for sustainable and resilient civil infrastructure can be divided into two aspects: (1) construction machinery and construction automation of civil structures; (2) intelligent civil structures with mechatronics components or systems, such as embedded sensors, smart materials, actuators, dampers, inspecting robots, etc. The coalition of mechatronics and civil engineering can make the civil structures adaptive to the requirements of sustainable and resilient development. The cross discipline to be formed by coalescing mechatronics and civil engineering is named civil mechatronics herein.

Although the machinery and equipment used in construction of civil structures were invented in the early 19thcentury, a successful construction application was not realized until the end of the 19thcentury when diesel and electric motor started replacing human, animal, and steam engine to provide driving power [1]. Around 1940's to 1950's, hydraulic transmission began to replace mechanical transmission, which greatly increased the manoeuvrability, operability, reliability, safety, and lightweight performance of the construction machinery. The modern construction machinery by employing mechatronics integrated technology was developed in 1970's, which further improved operating performance. The requirements of civil structure construction in hydroelectric power station, high speed railway, and urban metro have greatly enhanced the technological progress of the construction machinery. Now, construction machinery has expanded into a significant industrial sector.

The service life of large-scale civil structure, such as bridge, airport, high-rise building, nuclear power station, large hydroelectric dam, and oil-transmitting pipeline, is usually longer than 50-100 years. The condition monitoring and safety management for these civil structures are crucial for their safe operation. As early as 1980's, researchers began structural monitoring tasks with hundreds of sensors installed on a bridge [11]. Intelligent civil structures involve sensing, control, diagnosis, smart materials, actuator, self-repairing, and other key techniques.

The rest of this survey paper is arranged as follows. Recent progresses in civil mechatronics are overviewed in Section II. In section III, the highlights of papers in this Focused Section are introduced. Finally, the future trends and challenges are proposed in Section IV.

II. RECENT PROGRESSES ON CIVIL MECHATRONICS

A. Sensors and Sensor Networks for Civil Infrastructure

The past few decades have witnessed substantial growth in the application of sensors and sensor networks for civil infrastructure. Latest sensing technologies are regularly used to measure the states of structures, such as strain, displacement, acceleration, and temperature. The measurements provide crucial information for structural condition monitoring and health management.

Many recent developments in mechatronics found applications in structural health monitoring (SHM) systems. An SHM system measures structural performance and operating conditions via various types of sensing devices, as well as evaluates safety conditions using damage diagnosis or prognosis methods. Among latest sensing technologies, "smart" sensors with embedded computing and wireless communication have attracted wide interest. The ability to integrate sensors with wireless communication and embedded computing has motivated a flurry of research in developing wireless sensors for SHM [12],[13]. Not only laboratory demonstrations, but also large-scale field applications of wireless SHM research have grown at an impressive rate [14]-[16],[28]. In many studies, wireless sensing nodes are associated with high-precision accelerometers for vibration measurements. Although recent development in wireless sensing devices has helped to reduce hardware expenses, the cost of a wireless node with a high-precision accelerometer is still at least several hundred dollars, which makes dense instrumentation of static sensors still prohibitively expensive for large structures.

Compared with static sensors, mechatronics-based mobile sensors offer flexible architectures with adaptive and high spatial resolutions that can provide abundant detailed information about a large civil structure. It is anticipated that by incorporating mobility with sensors, mobile sensors will play an essential role in next revolution of sensor networks [17]. Some early researchers developed suction-based climbing robots for inspection in hazardous environments [18]-[20]; these robots weight tens of kilograms and have a relatively large size. In another example, a smaller beam-crawler was developed for wirelessly powering and interrogating battery-less peak-strain sensors; the crawler can move along the flange of an I-beam by wheels [21]. Exploiting magnetic on-off robotic attachment devices, a magnetic walker was later developed for maneuvering on a ferromagnetic structural surface [22]. Other researchers developed a remotely-controlled model helicopter acting as a mobile gateway, which charges and communicates with static wireless sensors fixed on a structure [23]. A combination of different sensors carried by robots can provide more complete information about the structure. In this regard, a modular paired structured light system, which consists of lasers and a camera, was proposed to measure the 6-DOF motion of a structure [24],[25].

Most recently, mobile sensor networks with dynamic reconfiguration have been explored for SHM. For example, a magnet-wheeled mobile sensing node originally conceptualized in [10],[26], with a total mass of 1kg and length of 22cm, was developed by incorporating a flexible compliant

beam between the front and rear wheel-pairs. A previously developed wireless sensing unit [13] is incorporated with additional functionality of commanding small servo motors that actuates the magnet wheels. Embedded software for the wireless sensing unit and the server software are both enhanced to provide remotely controlled mobility. As demonstrated in [27], the accelerometer can be attached onto or detached from the structural surface by bending or straightening the compliant beam of the flexure-based MSN, which also offers flexibility for transiting over concave or convex corners of a steel portal frame. Advanced mechanical analysis was conducted to the compliant mechanism that exploits beam buckling; the results match very well with experimental measurements [15].

B. Structural Control

Some main progresses in civil structural control include vibration-isolation and vibration control to protect the structure against natural hazards via damper or actuator. Because the actuators in active control need continuous power supply during operation, their reliability in hazardous events has been a concern for practical applications. As a result, damper-based semi-active control requiring smaller power supply has attracted more interesting practical applications.

Spencer and Nagarajaiah [29] reviewed state of the art in structure control, and summarized the pros and cons of existing control methods, control systems and actuation mechanisms used in the structure control. Using permanent magnet array, Yao and Wen developed magnet springs to reduce structural response during earthquakes [6]. Song and Washington studied mechatronic design and control of singly and doubly curved composite actuator systems [7]. Vibration control is often applied to flexible structures using damper or elastic components; the integration of VLSI circuits and mechatronics in flexible structure was studied in [30]. Guo et al. [31] and Oha et al. [32] developed the inspection system for pipe line and bridge, respectively. Addressing Stuttgart smart shell with hydraulic actuator, Weickgenannt et al. studied the active vibration control of a double-curved shell [33] and kinematic modeling of 3-SPR-parallel hydraulic manipulator [34].

C. Hydraulic Transmission and Control in Construction Machinery

Large construction worksites are complex production systems that consist of numerous human workers, mobile construction machines, and trucks collaborating to carry out tasks. Hydraulic transmission and control plays an important role in manipulation of construction machinery and equipment.

Effective fleet management requires intelligent construction machinery which can provide interoperability and seamless connectivity over wireless peer-to-peer networking [35]. Intelligent machine is an example of cyber-physical systems, and it is designed to have a close integration of networked computational units that collaborate to control physical elements, requiring new computing and networking abstractions that enable real-time orchestration [4].

Guaranteeing human worker safety is one of the main challenges in increasing automation level in construction worksites. This requires reliable mechatronic design solutions for human detection and avoidance technology from both semi and fully autonomous machines. Planning and vision systems working together with intelligent machines can be used for the manipulation of crane, transporter, and excavator. Using virtual reality and simulation to develop a simulator or monitor can assist operator with manipulating the machine, decreasing fuel consumption and preventing accidents. Eaton and Book [36] successfully developed an excavator simulator.

In order to be applied to large-scale and complicated engineering construction, construction worksites require very large forces and effective workspace from construction machinery. Hydraulic construction machines composed of wheeled or tracked mobile base platform equipped with hydraulic working devices and implements provides an optimal solution for this problem. The required mobility and high force attachment devices are provided by hydraulic actuators with high power-to-weight ratio, rapid response, compactness and reliable performance.

The mobile working machine manufacturers utilize hydraulic actuators widely due to reasons mentioned above. However, the major drawbacks in utilizing fluid power transmission systems are large energy losses and complexity in their control. The mechatronic controller design for hydraulic manipulators is very challenging due to non-linear characteristics of hydraulic control. In addition, hydraulic control systems suffer from inherent low damping which calls for advanced motion control to increase the work smooth performance. With respect to complexity of control, recently theoretically sound stability guaranteed multi-DOF hydraulic manipulator controllers operating in free space has been reported in [37]-[40]. In research conducted by [39],[41]-[43] encouraging power consumption reductions has been reported in high performance energy-efficient free space motion control of multiple degrees of hydraulic manipulators. Control of the physical interaction between a robotic manipulator and the environment is crucial for the execution of a number of practical tasks where the robot end-effector has to manipulate an object or perform some operation on a surface. In the robotic interaction control design for hydraulic excavator were presented in [44]-[46]. However, state of art still lacks research results on advanced high performance mobile hydraulic manipulator interaction control with rigorous stability guarantees.

One of the bottlenecks in introduction of more advanced closed-loop controlled robotic functionalities to construction machinery operating in harsh environmental conditions is a lack of easy-to-install, low cost and reliable motion sensors [47]-[49]. High accuracy and resolution joint position measurement is relatively straightforward with commercial contact-type angular sensors, such as magnetic or optical rotatory encoders that can easily provide accuracy of more than 1 arcsec. However, in addition to a high price, the drawback of this technology is two-folded [49]. Firstly, these sensors require a mechanical coupler to the manipulator rotating axles that is subject to assembly accuracy and failures in harsh outdoor environments. Secondly, obtaining low-noise low-delay estimates of the joint angular velocities and angular accelerations is a less trivial task [50], [51]. However, by using cost-efficient "strap-down" inertial sensors such as rate gyros and linear accelerometers based on micro-electromechanical systems technology, reconstructing the "true" rotatory joint

positions, angular velocities and angular accelerations directly without unwanted phase delay or distortion is possible by geometrically modeling the linear and angular motion effects involved, see e.g. [52]-[55].

Today, more and more operator assisting functionalities which utilize mechatronics designs are introduced. As mentioned, excavator is a highly versatile platform to attach various hydraulic working attachments. Many manufactures are providing operator assisting functionalities for helping production rate and precision of typical excavator works. The most advanced technology uses instrumented excavator boom, stick and bucket together with GPS positioning systems to assist operator to level the ground to match the desired 3D construction site surface map. Other examples of operator assisting functionalities for hydraulic manipulators include acceleration feedback control [54], resolved motion rate controls of a mobile concrete pump [55], and suspended load anti-sway control systems [56]. Field bus based controller network and distributed electro-hydraulic proportional system were successfully applied in elevating transporter with multi-axle drive and multi-suspension [57], and software steering trapezium and coordinated control strategy were proposed by Li et al [57].

D. Field Robot and Construction Machinery in civil construction

Robotics in civil construction becomes more and more important due to the lack of labor and the need to reduce the construction cost. The field robots in civil construction can be classified as teleoperated systems, intelligent systems, inspection robots, etc. [58].

1) Teleoperated systems in construction

Teleoperated systems such as teleoperated excavators and remote controlled robots have received much attention in recent years due to its efficiency and safety in civil construction and industrial field [59],[60]. The teleoperated machines are operated by human using wired or wireless connection. The teleoperated systems have been used for hazardous and dangerous tasks such as outdoor construction, agricultural tasks, ship maintenance, etc.

The teleoperated excavators have been studied widely but the task efficiency might be decreased because of lack of sensors or monitoring data for control. To solve this problem, many methods have been proposed. IMUs(Inertial Measurement Units) attached to the human arm can help teleoperate excavators more conveniently [59]. The excavator is able to find and avoid obstacles to prevent accident during digging by sensing the obstacles through force/torque sensors. For the construction work in landslide, a remote controlled robot for drilling is developed [60].

2) Intelligent systems in construction

Intelligent construction robots can be categorized into two types: fully autonomous construction robots and semi-autonomous construction robots. A fully autonomous construction robot should complete given tasks without a human supervisor. By contrast, a semi-autonomous construction robot needs intervention of a human operator for the task operation. For both cases, a robot is expected to sense the environment and make an optimal task plan [61] or request intervention. Unlike teleoperated construction machines, intelligent construction robots can be easily operated by unskilled workers.

Assembling steel beams or installing curtain walls is a very dangerous work for human, but by using a robotic system, fewer workers are required and also can guarantee more safety [61],[62].

For earthworks, studies on intelligent excavators and autonomous wheel loaders are in progress [63]. Autonomous steel beam construction systems [64], [65] have been developed for constructing high-rise buildings. An aerial building construction robot with quadrotor [66] is also being developed.

3) Inspection robot systems in construction

Because most of civil structures are exposed to rain, wind, air, sun, and temperature changes, there is a possibility of cracks and unexpected displacement. An inspection robot system can be used to monitor the crack or displacement of structures. As the robot system has become compact, providing higher performance with a less power, the robot is able to explore narrow or steep terrain. A typical example is a quadrotor robot system. This system, composed of a quadrotor and a custom-made manipulator, has been designed for remote inspection of structures [67],[68]. Another example is a wall climbing robot. The wall climbing robotic platforms use magnetic wheels [69],[27] or adhesive materials[70], [71] or claws [72] or suctions [73] to inspect structures. Last example is a robot moving along a pipe or a cable. The wheel-based robot system uses camera or electromagnetic field for inspecting pipes or cables [74]-[76].

4) Other robots for construction

The exoskeleton robot system is a human-robot cooperation system that enhances the power of a wearer in various environments. Recently, the exoskeleton robot systems have been developed in various fields such as industry, military, rescue, and medical. In the construction field, the robot has been developed to assist workers to carry heavy loads [77]. The exoskeleton robot is controlled by analyzing EMG signals so that the user can lift various loads with the same power [78]. The exoskeleton robot can reduce the fatigue of workers, so that increasing the work efficiency and reducing the dangerous situation in the workplace.

In the underwater construction sites, many kinds of robots are researched since the construction areas are hard to reach and hard to work for a long time. An underwater excavator is one of the most representative robots [79]. In the underwater, the localization and sensing of environment are most challenging issues since the infrastructures and available sensors are strictly limited.

5) *Robot navigation (positioning, reconstruction/mapping)*

In the construction field, there have been many studies to apply robot navigation technologies such as positioning and 3-D reconstruction. Due to the complexity of construction projects and dynamic environment of outdoor construction site, monitoring the construction site and its reconstruction have always been important issues. Therefore many researchers have tried to develop the system to monitor the construction sites and reconstruct them in order to acquire the information for safety management, construction process management, and even for training and education of workers.

For large outdoor construction jobsites, GPS or wireless

communication network can be used for tracking and positioning equipment operations, activities of workers, and any other construction resources [80], [81]. The collected data can be analyzed and evaluated for the construction work and finally construction manager can use the data for planning and management of construction site operation. Meanwhile, RF-based technologies and laser range finder are used for indoor positioning of workers and materials to be tracked [82], [83]. Based on real-time kinematic GPS, wireless data radio, and extend Kalman filtering algorithm, a positioning and collaborative control system for twin-crane to convey heavy girder was developed [3].

3-D reconstruction technologies are also widely studied in construction field, and several methods based on the image data were applied to generate 3D spatial model [84].

E. Health Monitoring of Civil Structure

Structural health monitoring or SHM is a broad term defined as is the process of comparing the current state of a structure's condition relative to a baseline or expected state to detect the existence, location, and degree of likely damage after a damaging input, such as an earthquake. A health monitoring system includes the placement of the sensor and sensor network, data fusion and fault symptom feature extracting, and health/fault assessment method.

Most efforts to date in this field have focused on structures in seismic zones and assessing damage after a major event, and in particular on computational methods to assess damage (e.g. [85]-[91]). Many current vibration-based SHM methods, particularly for large civil structures, are based on modal parameter damage detection in both the time series and frequency domain [85]-[91]. Current modal methods are more applicable to steel-frame and bridge structures where vibration response is more linear [87]-[91] and several assume one has data from the undamaged state [90], which is increasingly possible with advanced sensor technologies.

In addition, SHM technologies need to be able to identify localized damage, be robust in the presence of noise, and evaluate structural health rapidly or in real time [85],[86]. All of these characteristics are ones that can increasingly be met by emerging, improved sensor technologies that are more distributed, low cost, and easily used in volume, and/or can integrate computation directly with measurement.

Most existing methods that could potentially provide real-time SHM are modal or frequency based methods. These methods typically only use accelerometers as sensors and rely on the change in natural frequencies to detect damage [86],[90],[92]. However, a change in a frequency doesn't necessarily represent damage, particularly with highly non-linear responses [93]. Significant changes in story stiffness are often required as well, which would normally cause clearly visible damage [93]. Equally, references [92]-[94] identified changes in structural stiffness in real-time using a Least Mean Squared (LMS)-based adaptive filtering approach in real-time. However, this method requires measurement of velocity and displacement, which has often been considered impractical in many realistic cases due to excessive sensor requirements.

Recently there have been significant advances in GPS displacement monitoring technology for large structures [93]-[97]. Displacements can be measured with 1-3 mm

accuracy for rates of up to 3-4 Hz, which include the modal frequencies of the rigid structure [94], and for 1 Hz, measurement errors have been stated as less than 12% [89]. The use of GPS opens up new opportunities in real-time structural health monitoring [93]. Equally, there are increasing advances in a wide range of displacement sensing technologies (e.g. [98]-[101]) that will enable further improvements in our ability to accurately identify and locate damage.

However, monitoring structural damage is just at the beginning. Buildings increasingly have the ability to monitor all their functions, such as climate and energy usage. Integrated together these present other forms of monitoring to improve lifecycle and services in these buildings, as well as making them more economic and cost effective. Even that is not the end of the age of the (fixed) sensors. Networking lets us integrate buildings and regions into wider area of monitoring and leads eventually, with other systems, towards what some are now calling "smart cities" where data from buildings, power grids, traffic and much more are integrated into an entire interconnected, some might dare say optimized, organism.

Thus, the next, "next age" is always around the corner. Increasingly the use of sensors to monitor, improve performance, and aid decision making, whether human or automated, is seen as an avenue to achieve significant social and economic benefits. More succinctly, our ability to sense our environment has always let us assess and monitor what is around us, with silicon and other advanced sensors and computation this ability is being dramatically enhanced via mechatronics-based methods and technologies.

III. HIGHLIGHTS IN THIS FOCUSED SECTION

After a rigorous review process, we have accepted eight papers for publication while unfortunately, given the page limit, we had to make the difficult decision to turn down many other high-quality submissions. The focused section is organized to group the eight papers in three topic areas, i.e. sensor and inspection system, structure control, and construction machinery.

A. Sensor and inspection system

Under this topic, Laflamme *et al.* propose a soft elastomeric capacitor sensor for strain measurement over large surfaces. Converting strain into capacitance change, this sensor is characterized by low cost and large strain measurement range. It is demonstrated that deflection shapes of a simply supported beam can be reliably reconstructed using the sensor measurements.

La *et al.* have developed a mobile bridge deck inspection platform equipped with localization and navigation, sensor network, wireless on-board control system, as well as the associated extended algorithm for Kalman filter estimation and multi-sensor data fusion. The wheeled robot contains GPS localization and navigation system with real-time kinematic correction, as well as provides remove access to surface images and various nondestructive evaluation data. The kinematic modeling of the inspection system and motion planning are discussed.

Hanger cable is among the major structural components in

suspension bridges. Cho *et al.* have studied the mechanism of a novel cable-climbing robot designed for cable inspection. Image data are wirelessly transmitted for inspecting broken wires in the cable. Motion control of the cable-climbing robot is described.

In another paper, Park *et al.* propose a multi-metric data fusion method to estimate displacement based on strain and acceleration data. This data fusion method doesn't need prior calibration, and has been successfully used for estimating the mid-span displacement of a cable-stayed bridge.

B. Structural control

Under this topic, Lin *et al.* have studied the parameter identification of nonlinear characteristics that describes electric current controlled squeeze-mode MR damper and semi-active structural control with this MR damper. A bi-viscosity model is proposed to establish the nonlinear model of this MR damper. It is shown that the parameter identification result of the bi-viscosity model is more robust to frequency variation than Bouc-Wen model. Based on this MR damper, a semi-active fuzzy controller is designed.

Ha *et al.* propose a current-driven cylindrical MR damper with accumulator, whose damping and stiffness characteristics can be adjusted. The authors have studied the modeling of nonlinear damping characteristics of this MR damper, as well as a second sliding mode control law that is free of chattering.

Finally, Zhang *et al.* propose a novel feedback control method to improve the accuracy of substructure system identification. The identification error is formulated through cross power spectral densities (CPSD). To reduce substructure identification error, feedback control is proposed to increase the CPSD of the inter-story acceleration, and decrease CPSD ratio between two adjacent inter-story accelerations in a narrow frequency range centered at the story substructure frequency. Experimental validation has been carried out with a shear-frame model structure.

C. Construction machinery

Under this topic, Wang *et al.* study modeling and control method for electro-hydraulic proportion control of the erection system in Shield Tunneling Machine. An experimental system is developed for performance demonstration. The paper addresses issues such as position feedback control design, integral-separation PI control law with anti-windup, position system, speed system, and the selection method of controller parameters.

IV. FUTURE TREND OF CIVIL MECHATRONICS

Civil mechatronics is a rapidly developing research field. Advances in mechatronics technologies can assist in the implementation of innovative structural control and health monitoring systems, as well as facilitate the construction machinery and equipment to be reliable, safe, and highly efficient in construction automation. Although many advances in this cross discipline have been achieved, there are still many challenging theoretical and technological issues to be resolved. Some possible future trends are listed as follows:

- To further incorporate sensors with wireless communication and embedded computing and form smart sensor and smart sensor network with more powerful function;
- To develop multi-sensing-function sensor chip with low power consumption, wireless communication, and advanced data processing algorithm;
- To investigate advanced data fusion, feature extraction, and condition assessment algorithms;
- To study the approximation realization method by semi-active control components such as damper and variable energy accumulator to realize active control;
- By incorporating bio-engineering and information technique, to develop of novel mobile inspection robot for space structures and large bridges, high speed railways, high buildings, etc.;
- To study image processing algorithm and realization approach to meet challenges in tough construction environment;
- To develop field robot-group control, multi-wheel driving construction machinery, and field controller for complicated task such as aqueduct, track-bridge, and metro construction and harsh construction environment;
- To investigate virtual-reality simulation and control of teleoperated construction machinery;
- To study the integration method of construction management and health monitoring system, mobile communication network, and intelligent construction machinery and equipment;
- 10) To study advanced control theory, information techniques, advanced kinetics and mechanism theory, and advanced electro-hydraulic control system design theory for developing high performance construction machinery and group construction machinery.

ACKNOWLEDGMENT

As Guest Editors, we thank all of the contributing authors for submitting their latest research results on civil mechatronics to this Focused Section. Meanwhile, we also express the appreciation to all reviewers for their hard work and great support. Specially, we also would like to thank Professor K.-M. Lee for giving us an opportunity to organize this Focused Section.

The lead guest editor would like to thank the support from National Natural Science Foundation of China (51075016).

YUNHUA LI, *Lead Guest Editor* Beihang University Beijing 100191, P.R.China <u>yhli@buaa.edu.cn</u>

YANG WANG, *Guest Editor* Georgia Institute of Technology Atlanta, GA 30332-0355, U.S.A. yang.wang@ce.gatech.edu J. GEOFFREY CHASE, *Guest Editor* University of Canterbury Christchurch 8140, New Zealand geoff.chase@canterbury.ac.nz

JOUNI MATTILA, *Guest Editor* Tampere University of Technology/IHA FI-33101 Tampere, Finland jouni.mattila@tut.fi

HYUN MYUNG, *Guest Editor* Korea Advanced Institute of Sci. and Tech. Korea hmyung@kaist.ac.kr

OLIVER SAWODNY, *Guest Editor* University of Stuttgart 70569 Stuttgart, Germany sawodny@isys.uni-stuttgart.de

REFERENCES

- C. B. Tatum, Michael Vorster, and Mac Klingler, "Innovations in Earthmoving Equipment: New Forms and Their Evolution," *J. Constr. Engrg. and Mgmt*, vol. 132, no.9, pp.987-997,2006.
- [2] J.M. Lee, S. Lee, M.H. Lee, and K.S. Yoon, "Integrated wiring system for construction equipment," *IEEE/ASME Trans. Mechatronics*, vol.4, no.2, pp.187 – 195, June 1999.
- [3] L.M. Yang, Z.W. Guo, Y.H. Li, and C. Li "Posture Measurement and Coordinated Control of Twin Hoisting-Girder Transporters Based on Hybrid Network and RTK-GPS," *IEEE/ASME Trans. Mechatronics*, vol.14, no.2, pp.141 – 150, 2009.
- [4] E.A. Lee, "Cyber Physical System: Design Challenges," in 11th IEEE International Symposium on Object Orientated Real-Time Distributed Computing (ISORC2008), May 2008. pp. 363 - 369.
- [5] G. Paul, S. Webb, D.K. Liu, and G. Dissanayake, "Autonomous Robot Manipulator-Based Exploration and Mapping System for Bridge Maintenance," *Robot. & Auto. Sys.*, vol.59, no.7, pp.543-554, 2011.
- [6] G. C. Yao and C.H. Wen, "Performance of a Guideway Seismic Isolator with Magnetic Springs for Precision Machinery," *Earthquake Eng. and Struct. Dyn.*, vol.38,no.2, pp.181-203, 2009.
- [7] J.K. Song and G. Washington, "Mechatronic Design and Control of Singly and Doubly Curved Composite Mesoscale Actuator Systems," *IEEE/ASME Trans. Mechatronics*, vol.5, no.1, pp.49-57, Mar. 2000.
- [8] S.J. Dyke, B. F. Spense, and J.D. Carlson, "Modeling and control of magnetortheological dampers for seismic response reduction," *Smart Mater. Struct.*, vol.5., no.4, pp.565-575, 1996.
- [9] W. Granzer, F. Praus, and W. Kastner, "Security in Building Automation Systems," *IEEE Trans. Ind. Electron.*, vol.57, no.11, pp.3622 –3630, Nov. 2010
- [10] J.Guo, K.-M.Lee, D.Zhu, X. Yi, and Y. Wang, "Large-Deformation Analysis and Experimental Validation of a Flexure-Based Mobile Sensor Node," *IEEE/ASME Trans. Mechatronics*, vol.17, no.4, pp.606-616, Aug. 2012
- [11] J.P. Ou, "State-of-the-art of smart structural systems," *Earthquake Eng. and Eng. Vibration*, vol.19, no.2, pp.21-28, 1999
- [12] J. P. Lynch and K. J. Loh, "A summary review of wireless sensors and sensor networks for structural health monitoring," *The Shock and Vibration Digest*, vol. 38, pp. 91-128, 2006.
- [13] Y. Wang, J. P. Lynch, and K. H. Law, "A wireless structural health monitoring system with multithreaded sensing devices: design and validation," *Struc. Infrastruc. Eng.*, vol. 3, pp. 103-120, 2007.
- [14] J. P. Lynch, Y. Wang, K. J. Loh, J.-H. Yi, and C.-B. Yun, "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors," *Smart Materials and Structures*, vol. 15, pp. 1561-1575, 2006.
- [15] S. N. Pakzad, "Development and deployment of large scale wireless sensor network on a long-span bridge," *Smart Structures and Systems*, vol. 6, pp. 525-544, 2010.

- [16] J. A. Rice, K. Mechitov, S.-H. Sim, T. Nagayama, S. Jang, R. Kim, J. B. F. Spencer, G. Agha, and Y. Fujino, "Flexible smart sensor framework for autonomous structural health monitoring," *Smart Structures and Systems*, vol. 6, pp. 423-438, 2010.
- [17] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," *IEEE Commun. Mag.*, vol. 40, pp. 102-114, 2002.
- [18] S. Urwin-Wright, D. Sanders, and S. Chen, "Terrain prediction for an eight-legged robot," J. Robot. Syst., vol. 19, pp. 91-98, 2002.
- [19] C. Balaguer, A. Gimenez, and A. Jardon, "Climbing Robots' Mobility for Inspection and Maintenance of 3D Complex Environments," *Autonomous Robots*, vol. 18, pp. 157-169, 2005.
- [20] B. L. Luk, D. S. Cooke, S. Galt, A. A. Collie, and S. Chen, "Intelligent legged climbing service robot for remote maintenance applications in hazardous environments," *Robotics and Autonomous Systems*, vol. 53, pp. 142-152, 2005.
- [21] D. R. Huston, B. Esser, G. Gaida, S. W. Arms, and C. P. Townsend, "Wireless inspection of structures aided by robots," in *Proc. of SPIE*, *Health Monitoring and Management of Civil Infrastructure Systems*, pp. 147-154, Newport Beach, CA, 2001.
- [22] E. Brian, M. Jon, R. H. Dryver, and B. Phil, "Robotic systems for homeland security," in *Proc. of SPIE, Nondestructive Detection and Meas. for Homeland Security II*, pp. 134-142, San Diego, CA, 2004.
- [23] M. Todd, D. Mascarenas, E. Flynn, T. Rosing, B. Lee, D. Musiani, S. Dasgupta, S. Kpotufe, D. Hsu, R. Gupta, G. Park, T. Overly, M. Nothnagel, and C. Farrar, "A different approach to sensor networking for SHM: remote powering and interrogation with unmanned aerial vehicles," in *Proc. 6th Int'l Workshop on Stru. Health Monitoring, Stanford*, CA, 2007.
- [24] H. Myung, S. Lee, and B. Lee, "Paired structured light for structural health monitoring robot system," *Struct. Health Monit.*, vol. 10, pp. 49-64, 2010.
- [25] H. Jeon, Y. Bang, and H. Myung, "A paired visual servoing system for 6-DOF displacement measurement of structures," Smart Mater. Struct., vol. 20, no.4, p.045019, 2011, doi:10.1088/0964-1726/20/4/045019.
- [26] K.-M. Lee, Y. Wang, D. Zhu, J. Guo, and X. Yi, "Flexure-based mechatronic mobile sensors for structure damage detection," in *Proc. of* the 7th Int'l Workshop on Stru. Health Monit., Stanford, CA, USA, 2009.
- [27] D. Zhu, J. Guo, C. Cho, Y. Wang, and K. M. Lee, "Wireless mobile sensor network for the system identification of a space frame bridge," *IEEE/ASME Trans. Mechatronics*, vol. 17, pp. 499-507, 2012.
- [28] M.J. Chaea, H.S. Yoob, J.Y. Kima, and M.Y. Cho, "Development of a wireless sensor network system for suspension bridge health monitoring," *Autom. Constr.*, vol.21, pp.237–252, January 2012.
- [29] B. F. Spencer Jr. and S. Nagarajaiah, "State of the art of structural control," J.Struc. Eng., vol. 129, no. 7, pp. 845–856, July 2003
- [30] L.G. Lenning, A. Shah, U. Ozguner, and S.B. Bibyk, "Integration of VLSI circuits and mechanics for vibration control of flexible structures," *IEEE/ASME Trans. Mechatronics*, vol.2, no.1, pp.30 – 40, March 1997.
- [31] W. Guo, L. Soibelman, and J.H. Garrett Jr., "Automated defect detection for sewer pipeline inspection and condition assessment," *Autom. Constr.*, vo18, no.5, pp.587–596, Aug. 2009.
- [32] J. Oha, G. Janga, S. Oha, J.H. Leea, B. Yia, Y.S. Moona, J.S. Leeb, and Y. Choia, "Bridge inspection robot system with machine vision," *Autom. Constr.*, vo18, no.7, pp.929–941, Nov. 2009.
- [33] M. Weickgenannt, S. Neuhaeuser, W. Sobek, and O. Sawodny, "Active vibration control of a double-curved shell structure using the example of stuttgart smartshell," in *The ASME 2012 International Mechanical Engineering Congress*, 2012.
- [34] M. Weickgenannt, S. Neuhaeuser, C. Goehrle, W. Sobek, and O. Sawodny, "Kinematic modeling of a hydraulically actuated 3-SPR-parallel manipulator for an adaptive shell structure," in *Proc. IEEE/ASME Int'l Conf. on Advanced Intelligent Mechatronics(AIM)*, July 2013, Wollongong, Australia
- [35] A. Hahto, T. Rasi, J. Mattila, and K. Koskimies, "Service-oriented architecture for embedded machine control," in *Proc. IEEE International Conference on Service-Oriented Computing and Applications*, 2001.
- [36] D. Elton and W. Book, "An excavator simulator for determining the principles of operator efficiency for hydraulic multi-DOF systems," in *Proc. of the 52nd national conference of fluid power*, Las Vegas, USA, Mar. 2011.
- [37] W.-H. Zhu, Virtual Decomposition Control, Springer-Verlag, 2010.
- [38] M. R. Sirouspour and S.E. Salcudean, "Nonlinear Control of a Hydraulic Robots," *IEEE Trans. Robot. Autom.*, vol.17, no.2, pp. 759-765, Apr. 2001.
- [39] F. Bu and B. Yao, "Observer based coordinated adaptive robust control of

robot manipulators driven by single-rod hydraulic actuators," in *IEEE Int'l. Conf. on Robotics and Automation*, April 2000, pp. 3034 - 3039.

- [40] J. Koivumäki and J. Mattila, "Automation of multi degree of freedom hydraulic crane by using a virtual decomposition control," *in Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics*(AIM), July 2013, pp. 912-919.
- [41] J. Mattila, and T.Virvalo, "Energy-efficient motion control of a hydraulic manipulator," in Proc. IEEE Int. Conf. Robot. Autom., April 2000, pp. 3000 - 3006.
- [42] J.Koivumäki, and J.Mattila, "An energy-efficient high performance motion control of a hydraulic crane applying virtual decomposition control," in Proc. *IEEE/RJS Int. Conf. on Intelligent Robots and Systems*, Nov. 2013, Tokyo, Japan.
- [43] J.Koivumäki, and J.Mattila, "Stable and High Performance Energy-Efficient Motion Control of Electric Load Sensing Controlled Hydraulic Manipulators," in *Proc. Bath/ASME Symposium on Fluid Power & Motion Control*, Oct. 2013, Sarasota, Florida, USA.
- [44] S.E. Salcudean, K. Hashtrudi-Zaad, S. Tafazoli, S. P. Dimaio, and C. Reboulet, "Bilateral matched impedance teleoperation with application to excavator control," *IEEE Trans. Control Syst. Technol.*, vol.19, no.6, pp. 29-37, Dec.1999.
- [45] S.Tafazoli, P. D. Lawrence, S. E. Salcudean, D. Chan, S. Bachmann and C.W. de Silva, "Parameter estimation and friction analysis for a mini-excavator," in *Proc. IEEE Int. Conf. of Robotics and Automation*, April 1996, Minneapolis, MN, USA, pp. 329- 334.
- [46] S.Tafazoli, S. E. Salcudean, K. Hashtrudi-Zaad, and P. D. Lawrence, "Impedance Control of a Teleoperated Excavator," *IEEE Trans. Control Syst. Technol.* vol.10, no.3, pp. 355-367, May 2002.
- [47] P. Cheng and B. Oelmann, "Joint-angle measurement using accelerometers and gyroscopes-a survey," IEEE Trans. Instrum. Meas., vol. 59, no.2, pp. 404–414, Feb. 2010.
- [48] J. Leavitt, A. Sideris, and J. Bobrow, "High bandwidth tilt measurement using low-cost sensors," *IEEE/ASME Trans. Mechatronics*, vol.11, no.3, pp. 320-327, June 2006.
- [49] F. Ghassemi, S. Tafazoli, P.D. Lawrence, and K. Hashtrudi-Zaad, "Design and calibration of an Integration-free Accelerometer-based Joint-Angle Sensor," *IEEE Trans.Instrum.Meas.*, vol. 57, no. 1, pp.150-159,Jan. 2008.
- [50] S.J. Ovaska and S.Väliviita, "Angular Acceleration Measurement: A Review," *IEEE Trans. Instrum. Meas.*, vol.47, no.5, pp. 1211–1217, Oct.1998.
- [51] A.J.L. Harrison and D.P. Stoten, "Generalized finite difference methods for optimal estimation of derivatives in real-time control problems," in *Proc. Inst. Mech. Eng. Part I-J Syst Control Eng.*, vol.209, no2, pp. 67-78, May 1995
- [52] J. Vihonen, J. Honkakorpi, J. Mattila, and A.Visa, "Geometry-Aided MEMS Motion State Estimation for Multi-Body Manipulators," in *Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics*, July 2013, pp. 341-347.
- [53] J. Vihonen, J. Honkakorpi, J. Mattila, and A. Visa, "Geometry-Aided Angular Acceleration Sensing of Rigid Multi-Body Manipulator Using MEMS Rate Gyros and Linear Accelerometers," in *Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems*, Nov.2013
- [54] J. Honkakorpi, J. Vihonen, and J. Mattila, "MEMS-based State Feedback Control of Multi-Body Hydraulic Manipulator," in *Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems*, Nov.2013
- [55] J. Henikl, W. Kemmetmueller, and A. Kugi, "Modeling and Control of a Mobile Concrete Pump," in *Proc 6th IFAC Symposium on Mechatronic Systems*, April 10-12, 2013, pp. 91-98.
- [56] J. Honkakorpi, J. Vihonen, and J. Mattila, "MEMS Sensor Network Based Anti-Sway Control System for Articulated Hydraulic Crane," in Proc. Symposium on Fluid Power & Motion Control, ASME/BATH 2013, FPMC2013, Oct., 2013, Sarasota, Florida, USA.
- [57] Y.H. Li, L.M. Yang, and G.L. Yang, "Network-Based Coordinated Motion Control of Large-Scale Transportation Vehicles". *IEEE/ASME Trans. Mechatronics*, vol.12, no.2, pp.208-215, Apr. 2007.
- [58] B. Siciliano and O. Khatib (eds.), Handbook of Robotics, Springer, 2008.
- [59] D. Kim, J. Kim, K. Lee, C. Park, J. Song, and D. Kang, "Excavator teleoperation system using a human arm," *Autom. Constr.*, vol. 18, no. 2, pp. 173-182, 2009.
- [60] R. M. Molfino, R. P. Razzoli, and M. Zoppi, "Autonomous drilling robot for landslide monitoring and consolidation," *Autom. Constr.*, vol. 17, no. 2, pp. 111-121, 2008.
- [61] J. Seo, S. Lee, J. Kim, and S.-K. Kim, "Task planner design for an automated excavation system," Autom. Constr., vol. 20, no.7,

pp.954-966, 2011.

- [62] S. N. Yu, S.Y. Lee, C.S. Han, K.Y. Lee, and S.H. Lee, "Development of the curtain wall installation robot: Performance and efficiency test at a construction site," *Autonomous Robots*, vol. 22, pp.281-291, 2007.[60]
- [63] M. Magnusson and A. Hakan, "Consistent pile-shape quantification for autonomous wheel loaders," in *Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems*, pp. 4078-4083, Sep. 2011.
- [64] K. Jung, B. Chu, and D. Hong, "Robot-based construction automation: An application to steel beam assembly (Part II)," *Autom. Constr.*, vol. 32, pp. 62-79, July 2013.
- [65] B. Chu, K. Jung, M.-T. Lim, and D. Hong, "Robot-based construction automation: An application to steel beam assembly (Part I)," *Autom. Constr.*, vol. 32, pp. 46-61, July 2013.
- [66] Q. Lindsey, M. Daniel, and K. Vijay, "Construction with quadrotor teams," Autonomous Robots, vol. 33, no. 3, pp. 323-336, Oct. 2012.
- [67] M. Fumagalli, R. Naldi, A. Macchelli, R. Carloni, S. Stramigioli, and L. Marconi, "Modeling and control of a flying robot for contact inspection," in *Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and System (IROS)*, pp. 3532-3537, Oct. 2012.
- [68] A.E. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano, "Control of an aerial robot with multi-link arm for assembly tasks," in *Proc. IEEE Int'l Conf. on Robotics and Automation* (ICRA), May 2013.
- [69] Y. Tsai, V. Kaul, and A. Yezzi, "Three-dimensional localization for the Magnet Bike inspection robot," J. of Field Robotics, vol. 28, no. 2, pp. 180-203, Mar./Apr. 2011.
- [70] B. He, Z. Wang, M. Li, K. Wang, R. Shen, and S. Hu, "Wet adhesion inspired bionic climbing robot," *IEEE/ASME Trans. Mechatronics*, [Online]. Available: <u>http://ieeexplore.ieee.org</u>,10.1109/TMECH.2012.2234473
- [71] T. Seo and M. Sitti, "Tank-like module-based climbing robot usingpassive compliant joints," *IEEE/ASME Trans. Mechatronics*, vol. 18, no. 1, pp.397-408, Feb. 2013.
- [72] W. R. Provancher, S. I. Jensen-Segal, and M. A. Fehlberg, "ROCR: An energy-efficient dynamicwall-climbing robot," *IEEE/ASME Trans. Mechatronics*, vol. 16, no. 6, pp.897-906, Oct. 2011.
- [73] Y. Guan, H. Zhu, W. Wu, X. Zhou, L. Jiang, C. Cai, L. Zhang, and H. Zhang, "A modular biped wall-climbing robot with highmobility and manipulating function," *IEEE/ASME Trans. Mechatronics*, [Online]. Available: http://ieeexplore.ieee.org, DOI: 10.1109/TMECH.2012.2213303
- [74] F. Xu, X. Wang, and L. Wang, "Cable inspection robot for cable-stayed bridges: Design, analysis, and application," *Journal of Field Robotics*, vol. 28, no. 3, pp. 441-459, May/June 2011.
- [75] H. M. Kim, K.H. Cho, Y.H. Jin, F. Liu, J.C. Koo, and H.R. Choi, "Development of cable climbing robot for maintenance of suspension bridges," in *Proc. IEEE Int'l Conf. Autom. Sci. Eng.* (CASE), pp. 606-611, Aug. 2012.
- [76] J.Qiao, J. Shang, and A. Goldenberg, "Development of inchworm in-pipe robot based on self-locking mechanism," *IEEE/ASME Trans. Mechatronics*, vol. 18, no. 2, pp.799-806, Apr. 2013.
- [77] H. D. Lee, W. S. Kim, J. S. Han, and C. Han, "The Technical Trend of the Exoskeleton Robot System for Human Power Assistance," *Int'l J. Precision Eng. Manufacturing*, vol. 13, no. 8, pp. 1491-1497, Aug. 2012.
- [78] J. Estremera, E. Garcia, M. Armada and P. Gonzalez de Santos, "Power assist devices for installing plaster panels in construction," *Autom. Constr.*, vol. 17, no. 4, pp. 459-466, May 2008.
- [79] T. Hirabayashia, J. Akizonob, T. Yamamotoc, H. Sakaid, and Hiroaki Yanoe, "Teleoperation of construction machines with haptic information for underwater applications,"*Autom. Constr.*, vol. 15, pp.563-570, 2006.
- [80] N. Pradhananga and J. Teizer, "Automatic spatio-temporal analysis of construction site equipment operations using GPS data," *Autom. Constr.*, vol. 29, pp. 107-122, Jan. 2013.
- [81] B. Naticchia, M. Vaccarini, and A. Carbonari, "A monitoring system for real-time interference control on large construction sites," *Autom. Constr.*, vol. 29, pp. 148-160, Jan. 2013.
- [82] S. N. Razavi and O. Moselhi, "GPS-less indoor construction location

sensing," Autom. Constr., vol. 28, pp. 128-122, Dec. 2012.

- [83] R. Maalek and F. Sadeghpour, "Accuracy assessment of ultra-wide band technology in tracking static resources in indoor construction scenarios," *Autom. Constr.*, vol. 30, pp. 170-183, Dec. 2012.
- [84] M. D. Yang, C. F. Chao, K. S. Huang, L. Y. Lu, and Y. P. Chen, "Image-based 3D scene reconstruction and exploration in augmented reality," *Autom. Constr.*, vol. 33, pp. 48-60, Aug. 2013.
- [85] J. G. Chase, K. L. Hwang, L. R. Barroso, and J. B. Mander, "A simple LMS-based approach to the structural health monitoring benchmark problem," *Earthquake Engineering & Structural Dynamics*, vol. 34, pp. 575-594, May 2005.[83]
- [86] M. Nayyerloo, J. G. Chase, G. A. MacRae, and X. Q. Chen, "LMS-based approach to structural health monitoring of nonlinear hysteretic structures," *Structural Health Monitoring-an International Journal*, vol. 10, pp. 429-444, Jul 2011.[84]
- [87] C. E. Hann, I. Singh-Levett, B. L. Deam, J. B. Mander, and J. G. Chase, "Real-Time System Identification of a Nonlinear Four-Story Steel Frame Structure-Application to Structural Health Monitoring," *Sensors Journal, IEEE*, vol. 9, pp. 1339-1346, 2009.[85]
- [88] G. Konstantinidis, P. D. Wilcox, and B. W. Drinkwater, "An investigation into the temperature stability of a guided wave structural health monitoring system using permanently attached sensors," *Sensors Journal*, *IEEE*, vol. 7, pp. 905-912, 2007.[86]
- [89] J. N. Yang and S. Lin, "On-line identification of non-linear hysteretic structures using an adaptive tracking technique," *Int'IJ. Non-Linear Mechanics*, vol. 39, pp. 1481-1491, 2004.
- [90] Z. Hou, M. Noori, and R. S. Amand, "Wavelet-based approach for structural damage detection," J. Eng. Mechanics, vol. 126, pp. 677-683, 2000.
- [91] R. Jankowski, "Theoretical and experimental assessment of parameters for the non-linear viscoelastic model of structural pounding," J. *Theoretical and Applied Mechanics*, vol. 45, pp. 931-942, 2007.
- [92] J. G. Chase, H. A. Spieth, C. F. Blome, and J. B. Mander, "LMS-based structural health monitoring of a non-linear rocking structure," *Earthq. Eng. Struct. Dyn.*, vol. 34, pp. 909-930, July 2005.
- [93] A. G. Chassiakos, S. F. Masri, A. W. Smyth, and T. K. Caughey, "On-Line Identification of Hysteretic Systems," *J. Applied Mechanics*, vol. 65, pp. 194-203, 1998.
- [94] J. G. Chase, V. Begoc, and L. R. Barroso, "Efficient structural health monitoring for a benchmark structure using adaptive RLS filters," *Computers & Structures*, vol. 83, pp. 639-647, 2005.
- [95] C. Christopoulos, A. Filiatrault, and B. Folz, "Seismic response of self-centring hysteretic SDOF systems," *Earthq. Eng. Struct. Dyn.*, vol. 31, pp. 1131-1150, 2002.
- [96] X. Li, G.-D. Peng, C. Rizos, L. Ge, Y. Tamura and A. Yoshida, "Integration of GPS, accelerometer and optical fiber sensors for structural deformation monitoring," in the *17th Int'l Tech. Meeting of the Satellite Division of the Institute of Navigation*, Long Beach, California 2004, pp. 211-224.
- [97] T. Kijewski-Correa, A. Kareem, and M. Kochly, "Experimental Verification and Full-Scale Deployment of Global Positioning Systems to Monitor the Dynamic Response of Tall Buildings," *Journal of Structural Engineering*, vol. 132, pp. 1242-1253, 2006.
- [98] T. C. Hutchinson, S. R. Chaudhuri, F. Kuester, and S. Auduong, "Light-Based Motion Tracking of Equipment Subjected to Earthquake Motions," J. Computing in Civil Eng., vol. 19, pp. 292-303, 2005.
- [99] T.C. Hutchinson, F. Kuester, K.-U. Doerr, and D. Lim, "Optimal hardware and software design of an image-based system for capturing dynamic movements," *IEEE Trans. Instrum. Meas.*, vol. 55, pp. 164-175, 2006.
- [100] M.-S. Lim and J. Lim, "Visual measurement of pile movements for the foundation work using a high-speed line-scan camera," *Pattern Recognition*, vol. 41, pp. 2025-2033, 2008.
- [101]J.-J. Orteu, "3-D computer vision in experimental mechanics," Optics and Lasers in Engineering, vol. 47, pp. 282-291, 2009.

Yunhua Li (M'05-SM'12) received his B.S. degree in mechanical engineering from North China University of Water Resources and Electric Power. His M.S. degree in mechanical engineering and Ph. D degree in Mechatronics were respectively obtained at Jilin University of Technology, Changchun, China, in 1988, and at Xi'an Jiaotong University, Xi'an, China, in 1994.

Dr Li was employed as a Post doctoral research fellow in Beihang University, China, and National Chengkung University, Taiwan, from December 1994 to October 1996 and from July 1997 to August 1997, respectively. He has been a Full Professor in Mechanical Engineering and Control Science and Technology in Beihang University since 1999. His research interests include non-linearity dynamics, hydraulic and mechatronic servo control, and power transmission and control of aircraft, mobile robots and vehicle. He has published more than 160 refereed journal and conference papers on the transactions and journals sponsored by IEEE, ASME and Elsevier, and 4 books. He has completed numerous granted research and development projects as the Principal Investigator.

Currently, Dr Li is a technical editor of IEEE/ASME Transactions on Mechatronics.

Yang Wang is an Assistant Professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. With a B.S. and an M.S. degree in Civil Engineering awarded by Tsinghua University in Beijing, China, he obtained a Ph.D. degree in Civil Engineering at Stanford University in 2007, as well as an M.S. degree in Electrical Engineering.

Dr. Wang's research interests include structural health monitoring and damage detection, decentralized structural control, wireless and mobile sensors, and structural dynamics. He received an NSF Early Faculty Career Development (CAREER) Award in 2012 and a Young Investigator Award from the Air Force Office of Scientific Research (AFOSR) in 2013. Dr. Wang is the author and coauthor of over 80 journal and conference papers.

Currently, Dr Wang serves as an Associate Editor for the ASCE (American Society of Civil Engineers) Journal of Bridge Engineering.

J. Geoffrey Chase received his B.S. from CaseWestern Reserve University in 1986 in Mechanical Engineering. His M.S. and PhD were obtained at Stanford University in 1991 and 1996 in the departments of Mechanical and Civil Engineering, respectively. He spent 6 years working for General Motors between various degrees and a further 5 years consulting and doing research in Silicon Valley, including positions at Xerox PARC, GN ReSound, Hughes Space and Communications and Infineon Technologies AG, before taking his current position at the University of Canterbury in 2000.

His fundamental research interests include: automatic control, physiological systems dynamics, structural dynamics and vibrations, dynamic and systems modeling. These areas have been primarily applied in his research to biomedical and clinical medical devices with a focus on creating efficient delivery and optimized, patient-specific health care delivery. Selected specific accomplishments include the development of two startup companies focusing on novel breast cancer screening technologies, and model-based therapeutics in critical care.

Dr. Chase has published over 650 international, refereed journal and conference papers in these areas over the last 11 years, and is an inventor on over 12 US and European patents with several in process. He is on the editorial board of four journals in Bio-Engineering and Clinical Medicine, and is a Fellow of the Royal Society of New Zealand (FRSNZ) and IPENZ (FIPENZ).

Jouni Mattila received M.Sc. (Eng.) in 1995 and Dr. Tech. in 2000 both from Tampere University of Technology(TUT) in Finland.

He is a professor (Machine Automation) at Department of Intelligent Hydraulics and Automation (IHA). He is a TUT program manager in ITER Remote Handling maintenance projects that involves research on heavy-duty water hydraulic robotic manipulators. He coordinates Marie Curie ITN-project with 15 PhD-students across the EU called: PURESAFE that develops mobile robotics for Cern and GSI/FAIR. He has been involved in numerous industrial research projects. His research interests include machine automation and preventive maintenance, and fault-tolerant control system development for robotic manipulators and off-highway machinery.

Hyun Myung received his Ph.D. degree in electrical engineering from KAIST (Korea Advanced Institute of Science and Technology), Daejeon, South Korea in 1998.

He is currently an associate professor in the Dept. of Civil and Environmental Engineering, and also an adjunct professor of the Robotics Program at KAIST. He was a principal researcher in SAIT (Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd.), Yongin, South Korea (2003.7-2008.2). He was a director in Emersys Corp. (2002.3-2003.6) and a senior researcher in ETRI (Electronics and Telecommunications Research Institute) (1998.9-2002.2), South Korea. His research interests are in the areas of robotic SHM (Structural Health Monitoring), mobile robot navigation, autonomous underwater vehicle, autonomous surface vehicle, SLAM (Simultaneous Localization And Mapping), evolutionary computation, numerical and combinatorial optimization, and intelligent control based on softcomputing techniques.

Oliver Sawodny studied electrical engineering at University of Karlsruhe. He received his PhD in 1996 in measurement and control from Universityof Ulm. He then continued as assistant professor at the University of Ulm/faculty ofelectrical engineering. In 2002 he was appointed full professor for automatic controlat Technische Universität Ilmenau. He became head of the institute for systems technology and automation in 2003. In 2005 he was appointed full professor and head of the institute for system dynamics at University of Stuttgart. He is currently dean of the faculty of mechanical engineering at University of Stuttgart.

He publishedmore than 50 journal papers and more than 150 reviewed conference papers. Hisresearch emphasis is in the area of automatic control, automation and mechatronics. Specifically, he is an expert in the area of system analysis of distributed parametersystems, numerical optimization and control methods based on differential geometry. His expertise is not only in the area of developing new methods, he is alsoperforming projects in direct cooperation with industry. He is working in the area of application oriented research in the field of robotics, nano positioning,

controlmethods for fluid power drive systems and automotive engineering, process industryand systems biology. He is inventor of more than 25 patents, many of them are international.