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Abstract—The application of mechatronics in civil engineering 

has increased the sustainability and resilience of large-scale civil 

infrastructure, whose safe operation is among the utmost 

important issues concerning human society and our daily lives.  

Meanwhile, challenges faced in large-scale infrastructure 

applications bring about interesting and new topics for research 

in mechatronics. This paper firstly reports a brief survey of the 

recent research progresses on the construction automation in civil 

engineering, intelligent sensing, structural monitoring and health 

management, and feedback control of structural vibration. Next, 

a brief highlight to eight papers in this “Focused Section on 

Mechatronics for Sustainable and Resilient Civil Infrastructure” 

is provided. Finally, some latest topics, challenges, and the future 

trends of mechatronics application in civil infrastructure are 

discussed. 

 
Index Terms—sensing, control, actuator, field robot, vibration, 

construction equipment, civil infrastructure. 

 

I. INTRODUCTION 

USTAINABILITY and resilience of large-scale civil 

infrastructure are of utmost importance concerning human 

society and our daily lives [1]. Meanwhile, the demands for 

large-scale civil infrastructure have also created a large 

numbers of applications for mechatronics. For example, in the 

past few decades, intelligent machinery(with field bus 

controller network, GPS positioning and measuring, 

load-sensing energy type of electro-hydraulic control, sensors, 

field robotics, and smart structures in field and service) has 

played an important role in construction automation 

[2]-[5],vibration control [6]-[8], and active maintenance [9],[10] 

of large-scale civil structures, such as bridge, airport, 

high-speed railway, etc.  As another example, the safety 

inspection of large civil structures has also adopted a variety of 

advanced inspection techniques such as bio-inspired robot 

inspection, image based structural inspection, sensor network, 

and multi-sensor data fusion. Furthermore, the application of 

mechatronics in civil engineering has propelled the 

development of mechatronics and control technologies, and has 

formed a cross-disciplinary field of smart structural technology. 

Sensing and feedback control is applied to civil structures for 

reducing excessive vibrations during strong dynamic excitation 

such as earthquakes, typhoons and other natural disasters. 

 
 

Mechatronics applications for sustainable and resilient civil 

infrastructure can be divided into two aspects: (1) construction 

machinery and construction automation of civil structures; (2) 

intelligent civil structures with mechatronics components or 

systems, such as embedded sensors, smart materials, actuators, 

dampers, inspecting robots, etc. The coalition of mechatronics 

and civil engineering can make the civil structures adaptive to 

the requirements of sustainable and resilient development. The 

cross discipline to be formed by coalescing mechatronics and 

civil engineering is named civil mechatronics herein. 

     Although the machinery and equipment used in construction 

of civil structures were invented in the early 19
th

century, a 

successful construction application was not realized until the 

end of the 19
th

century when diesel and electric motor started 

replacing human, animal, and steam engine to provide driving 

power [1]. Around 1940’s to 1950’s, hydraulic transmission 

began to replace mechanical transmission, which greatly 

increased the manoeuvrability, operability, reliability, safety, 

and lightweight performance of the construction machinery. 

The modern construction machinery by employing 

mechatronics integrated technology was developed in 1970’s, 

which further improved operating performance. The 

requirements of civil structure construction in hydroelectric 

power station, high speed railway, and urban metro have 

greatly enhanced the technological progress of the construction 

machinery. Now, construction machinery has expanded into a 

significant industrial sector.  

    The service life of large-scale civil structure, such as bridge, 

airport, high-rise building, nuclear power station, large 

hydroelectric dam, and oil-transmitting pipeline, is usually 

longer than 50-100 years. The condition monitoring and safety 

management for these civil structures are crucial for their safe 

operation. As early as 1980’s, researchers began structural 

monitoring tasks with hundreds of sensors installed on a bridge 

[11]. Intelligent civil structures involve sensing, control, 

diagnosis, smart materials, actuator, self-repairing, and other 

key techniques. 

    The rest of this survey paper is arranged as follows. Recent 

progresses in civil mechatronics are overviewed in Section II. 

In section III, the highlights of papers in this Focused Section 

are introduced. Finally, the future trends and challenges are 

proposed in Section IV.  

Survey and Introduction to Focused Section on 

Mechatronics for Sustainable and Resilient Civil 

Infrastructure 
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II. RECENT PROGRESSES ON CIVIL MECHATRONICS 

A. Sensors and Sensor Networks for Civil Infrastructure 

The past few decades have witnessed substantial growth in 

the application of sensors and sensor networks for civil 

infrastructure.  Latest sensing technologies are regularly used to 

measure the states of structures, such as strain, displacement, 

acceleration, and temperature. The measurements provide 

crucial information for structural condition monitoring and 

health management.  

Many recent developments in mechatronics found 

applications in structural health monitoring (SHM) systems. An 

SHM system measures structural performance and operating 

conditions via various types of sensing devices, as well as 

evaluates safety conditions using damage diagnosis or 

prognosis methods. Among latest sensing technologies, 

“smart” sensors with embedded computing and wireless 

communication have attracted wide interest.  The ability to 

integrate sensors with wireless communication and embedded 

computing has motivated a flurry of research in developing 

wireless sensors for SHM [12],[13].  Not only laboratory 

demonstrations, but also large-scale field applications of 

wireless SHM research have grown at an impressive rate 

[14]-[16],[28].  In many studies, wireless sensing nodes are 

associated with high-precision accelerometers for vibration 

measurements.  Although recent development in wireless 

sensing devices has helped to reduce hardware expenses, the 

cost of a wireless node with a high-precision accelerometer is 

still at least several hundred dollars, which makes dense 

instrumentation of static sensors still prohibitively expensive 

for large structures.   

Compared with static sensors, mechatronics-based mobile 

sensors offer flexible architectures with adaptive and high 

spatial resolutions that can provide abundant detailed 

information about a large civil structure.  It is anticipated that 

by incorporating mobility with sensors, mobile sensors will 

play an essential role in next revolution of sensor networks 

[17].  Some early researchers developed suction-based 

climbing robots for inspection in hazardous environments 

[18]-[20]; these robots weight tens of kilograms and have a 

relatively large size. In another example, a smaller 

beam-crawler was developed for wirelessly powering and 

interrogating battery-less peak-strain sensors; the crawler can 

move along the flange of an I-beam by wheels [21].  Exploiting 

magnetic on-off robotic attachment devices, a magnetic walker 

was later developed for maneuvering on a ferromagnetic 

structural surface [22].  Other researchers developed a 

remotely-controlled model helicopter acting as a mobile 

gateway, which charges and communicates with static wireless 

sensors fixed on a structure [23].  A combination of different 

sensors carried by robots can provide more complete 

information about the structure.  In this regard, a modular 

paired structured light system, which consists of lasers and a 

camera, was proposed to measure the 6-DOF motion of a 

structure [24],[25]. 

Most recently, mobile sensor networks with dynamic 

reconfiguration have been explored for SHM. For example, a 

magnet-wheeled mobile sensing node originally 

conceptualized in [10],[26], with a total mass of 1kg and length 

of 22cm, was developed by incorporating a flexible compliant 

beam between the front and rear wheel-pairs. A previously 

developed wireless sensing unit [13] is incorporated with 

additional functionality of commanding small servo motors that 

actuates the magnet wheels. Embedded software for the 

wireless sensing unit and the server software are both enhanced 

to provide remotely controlled mobility. As demonstrated in 

[27], the accelerometer can be attached onto or detached from 

the structural surface by bending or straightening the compliant 

beam of the flexure-based MSN, which also offers flexibility 

for transiting over concave or convex corners of a steel portal 

frame.  Advanced mechanical analysis was conducted to the 

compliant mechanism that exploits beam buckling; the results 

match very well with experimental measurements [15]. 

B. Structural Control 

Some main progresses in civil structural control include 

vibration-isolation and vibration control to protect the structure 

against natural hazards via damper or actuator. Because the 

actuators in active control need continuous power supply 

during operation, their reliability in hazardous events has been 

a concern for practical applications.  As a result, damper-based 

semi-active control requiring smaller power supply has 

attracted more interesting practical applications. 

Spencer and Nagarajaiah [29] reviewed state of the art in 

structure control, and summarized the pros and cons of existing 

control methods, control systems and actuation mechanisms 

used in the structure control. Using permanent magnet array, 

Yao and Wen developed magnet springs to reduce structural 

response during earthquakes [6].  Song and Washington studied 

mechatronic design and control of singly and doubly curved 

composite actuator systems [7]. Vibration control is often 

applied to flexible structures using damper or elastic 

components; the integration of VLSI circuits and mechatronics 

in flexible structure was studied in [30].  Guo et al. [31] and 

Oha et al. [32] developed the inspection system for pipe line 

and bridge, respectively. Addressing Stuttgart smart shell with 

hydraulic actuator, Weickgenannt et al. studied the active 

vibration control of a double-curved shell [33] and kinematic 

modeling of 3-SPR-parallel hydraulic manipulator [34].  

C. Hydraulic Transmission and Control in Construction 

Machinery 

Large construction worksites are complex production 

systems that consist of numerous human workers, mobile 

construction machines, and trucks collaborating to carry out 

tasks. Hydraulic transmission and control plays an important 

role in manipulation of construction machinery and equipment. 

Effective fleet management requires intelligent construction 

machinery which can provide interoperability and seamless 

connectivity over wireless peer-to-peer networking [35]. 

Intelligent machine is an example of cyber-physical systems, 

and it is designed to have a close integration of networked 

computational units that collaborate to control physical 

elements, requiring new computing and networking 

abstractions that enable real-time orchestration [4]. 

Guaranteeing human worker safety is one of the main 

challenges in increasing automation level in construction 

worksites. This requires reliable mechatronic design solutions 

for human detection and avoidance technology from both semi 
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and fully autonomous machines. Planning and vision systems 

working together with intelligent machines can be used for the 

manipulation of crane, transporter, and excavator. Using virtual 

reality and simulation to develop a simulator or monitor can 

assist operator with manipulating the machine, decreasing fuel 

consumption and preventing accidents. Eaton and Book [36] 

successfully developed an excavator simulator. 

In order to be applied to large-scale and complicated 

engineering construction, construction worksites require very 

large forces and effective workspace from construction 

machinery. Hydraulic construction machines composed of 

wheeled or tracked mobile base platform equipped with 

hydraulic working devices and implements provides an optimal 

solution for this problem. The required mobility and high force 

attachment devices are provided by hydraulic actuators with 

high power-to-weight ratio, rapid response, compactness and 

reliable performance.  

The mobile working machine manufacturers utilize 

hydraulic actuators widely due to reasons mentioned above. 

However, the major drawbacks in utilizing fluid power 

transmission systems are large energy losses and complexity in 

their control. The mechatronic controller design for hydraulic 

manipulators is very challenging due to non-linear 

characteristics of hydraulic control. In addition, hydraulic 

control systems suffer from inherent low damping which calls 

for advanced motion control to increase the work smooth 

performance. With respect to complexity of control, recently 

theoretically sound stability guaranteed multi-DOF hydraulic 

manipulator controllers operating in free space has been 

reported in [37]-[40]. In research conducted by [39],[41]-[43] 

encouraging power consumption reductions has been reported 

in high performance energy-efficient free space motion control 

of multiple degrees of hydraulic manipulators. Control of the 

physical interaction between a robotic manipulator and the 

environment is crucial for the execution of a number of 

practical tasks where the robot end-effector has to manipulate 

an object or perform some operation on a surface. In the robotic 

interaction control design for hydraulic excavator were 

presented in [44]-[46]. However, state of art still lacks research 

results on advanced high performance mobile hydraulic 

manipulator interaction control with rigorous stability 

guarantees. 

One of the bottlenecks in introduction of more advanced 

closed-loop controlled robotic functionalities to construction 

machinery operating in harsh environmental conditions is a 

lack of easy-to-install, low cost and reliable motion sensors 

[47]-[49]. High accuracy and resolution joint position 

measurement is relatively straightforward with commercial 

contact-type angular sensors, such as magnetic or optical 

rotatory encoders that can easily provide accuracy of more than 

1 arcsec. However, in addition to a high price, the drawback of 

this technology is two-folded [49]. Firstly, these sensors require 

a mechanical coupler to the manipulator rotating axles that is 

subject to assembly accuracy and failures in harsh outdoor 

environments. Secondly, obtaining low-noise low-delay 

estimates of the joint angular velocities and angular 

accelerations is a less trivial task [50],[51]. However, by using 

cost-efficient “strap-down” inertial sensors such as rate gyros 

and linear accelerometers based on micro-electromechanical 

systems technology, reconstructing the “true” rotatory joint 

positions, angular velocities and angular accelerations directly 

without unwanted phase delay or distortion is possible by 

geometrically modeling the linear and angular motion effects 

involved, see e.g. [52]-[55]. 

Today, more and more operator assisting functionalities 

which utilize mechatronics designs are introduced. As 

mentioned, excavator is a highly versatile platform to attach 

various hydraulic working attachments. Many manufactures 

are providing operator assisting functionalities for helping 

production rate and precision of typical excavator works. The 

most advanced technology uses instrumented excavator boom, 

stick and bucket together with GPS positioning systems to 

assist operator to level the ground to match the desired 3D 

construction site surface map. Other examples of operator 

assisting functionalities for hydraulic manipulators include 

acceleration feedback control [54], resolved motion rate 

controls of a mobile concrete pump [55], and suspended load 

anti-sway control systems [56]. Field bus based controller 

network and distributed electro-hydraulic proportional system 

were successfully applied in elevating transporter with 

multi-axle drive and multi-suspension [57], and software 

steering trapezium and coordinated control strategy were 

proposed by Li et al [57]. 

D. Field Robot and Construction Machinery in civil 

construction 

Robotics in civil construction becomes more and more 

important due to the lack of labor and the need to reduce the 

construction cost. The field robots in civil construction can be 

classified as teleoperated systems, intelligent systems, 

inspection robots, etc. [58]. 

1) Teleoperated systems in construction 

Teleoperated systems such as teleoperated excavators and 

remote controlled robots have received much attention in recent 

years due to its efficiency and safety in civil construction and 

industrial field [59],[60]. The teleoperated machines are 

operated by human using wired or wireless connection. The 

teleoperated systems have been used for hazardous and 

dangerous tasks such as outdoor construction, agricultural 

tasks, ship maintenance, etc. 

The teleoperated excavators have been studied widely but the 

task efficiency might be decreased because of lack of sensors or 

monitoring data for control. To solve this problem, many 

methods have been proposed. IMUs(Inertial Measurement 

Units) attached to the human arm can help teleoperate 

excavators more conveniently [59]. The excavator is able to 

find and avoid obstacles to prevent accident during digging by 

sensing the obstacles through force/torque sensors. For the 

construction work in landslide, a remote controlled robot for 

drilling is developed [60]. 

2) Intelligent systems in construction 

Intelligent construction robots can be categorized into two 

types: fully autonomous construction robots and 

semi-autonomous construction robots. A fully autonomous 

construction robot should complete given tasks without a 

human supervisor. By contrast, a semi-autonomous 

construction robot needs intervention of a human operator for 

the task operation. For both cases, a robot is expected to sense 

the environment and make an optimal task plan [61] or request 

intervention. Unlike teleoperated construction machines, 
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intelligent construction robots can be easily operated by 

unskilled workers. 

Assembling steel beams or installing curtain walls is a very 

dangerous work for human, but by using a robotic system, 

fewer workers are required and also can guarantee more safety 

[61],[62].  

For earthworks, studies  on intelligent excavators  and 

autonomous wheel loaders are in progress [63]. Autonomous 

steel beam construction systems [64], [65] have been developed 

for constructing high-rise buildings. An aerial building 

construction robot with quadrotor [66] is also being developed. 
3) Inspection robot systems in construction 

Because most of civil structures are exposed to rain, wind, air, 

sun, and temperature changes, there is a possibility of cracks 

and unexpected displacement. An inspection robot system can 

be used to monitor the crack or displacement of structures. As 

the robot system has become compact, providing higher 

performance with a less power, the robot is able to explore 

narrow or steep terrain. A typical example is a quadrotor robot 

system. This system, composed of a quadrotor and a 

custom-made manipulator, has been designed for remote 

inspection of structures [67],[68]. Another example is a wall 

climbing robot. The wall  climbing robotic platforms  use 

magnetic wheels [69],[27] or adhesive materials[70], [71] or 

claws [72] or suctions [73] to inspect structures. Last example 

is a robot moving along a pipe or a cable. The wheel-based 

robot system uses camera or electromagnetic field for 

inspecting pipes or cables [74]-[76]. 
4) Other robots for construction 

The exoskeleton robot system is a human-robot cooperation 

system that enhances the power of a wearer in various 

environments. Recently, the exoskeleton robot systems have 

been developed in various fields such as industry, military, 

rescue, and medical. In the construction field, the robot has 

been developed to assist workers to carry heavy loads [77]. The 

exoskeleton robot is controlled by analyzing EMG signals so 

that the user can lift various loads with the same power [78]. 

The exoskeleton robot can reduce the fatigue of workers, so that 

increasing the work efficiency and reducing the dangerous 

situation in the workplace. 

In the underwater construction sites, many kinds of robots are 

researched since the construction areas are hard to reach and 

hard to work for a long time. An underwater excavator is one of 

the most representative robots [79]. In the underwater, the 

localization and sensing of environment are most challenging 

issues since the infrastructures and available sensors are strictly 

limited. 

5) Robot navigation (positioning, reconstruction/mapping) 

In the construction field, there have been many studies to 

apply robot navigation technologies such as positioning and 

3-D reconstruction. Due to the complexity of construction 

projects and dynamic environment of outdoor construction site, 

monitoring the construction site and its reconstruction have 

always been important issues. Therefore many researchers have 

tried to develop the system to monitor the construction sites and 

reconstruct them in order to acquire the information for safety 

management, construction process management, and even for 

training and education of workers.  

For large outdoor construction jobsites, GPS or wireless 

communication network can be used for tracking and 

positioning equipment operations, activities of workers, and 

any other construction resources [80], [81]. The collected data 

can be analyzed and evaluated for the construction work and 

finally construction manager can use the data for planning and 

management of construction site operation. Meanwhile, 

RF-based technologies and laser range finder are used for 

indoor positioning of workers and materials to be tracked [82],

[83]. Based on real-time kinematic GPS, wireless data radio, 

and extend Kalman filtering algorithm, a positioning and 

collaborative control system for twin-crane to convey heavy 

girder was developed [3]. 

3-D reconstruction technologies are also widely studied in 

construction field, and several methods based on the image data 

were applied to generate 3D spatial model [84]. 

E. Health Monitoring of Civil Structure 

Structural health monitoring or SHM is a broad term defined 

as is the process of comparing the current state of a structure’s 

condition relative to a baseline or expected state to detect the 

existence, location, and degree of likely damage after a 

damaging input, such as an earthquake. A health monitoring 

system includes the placement of the sensor and sensor network, 

data fusion and fault symptom feature extracting, and 

health/fault assessment method. 

Most efforts to date in this field have focused on structures in 

seismic zones and assessing damage after a major event, and in 

particular on computational methods to assess damage (e.g. 

[85]-[91]). Many current vibration-based SHM methods, 

particularly for large civil structures, are based on modal 

parameter damage detection in both the time series and 

frequency domain [85]-[91]. Current modal methods are more 

applicable to steel-frame and bridge structures where vibration 

response is more linear [87]-[91] and several assume one has 

data from the undamaged state [90], which is increasingly 

possible with advanced sensor technologies. 

In addition, SHM technologies need to be able to identify 

localized damage, be robust in the presence of noise, and 

evaluate structural health rapidly or in real time [85],[86].  All 

of these characteristics are ones that can increasingly be met by 

emerging, improved sensor technologies that are more 

distributed, low cost, and easily used in volume, and/or can 

integrate computation directly with measurement. 

Most existing methods that could potentially provide 

real-time SHM are modal or frequency based methods. These 

methods typically only use accelerometers as sensors and rely 

on the change in natural frequencies to detect damage 

[86],[90],[92]. However, a change in a frequency doesn’t 

necessarily represent damage, particularly with highly 

non-linear responses [93]. Significant changes in story stiffness 

are often required as well, which would normally cause clearly 

visible damage [93]. Equally, references [92]-[94] identified 

changes in structural stiffness in real-time using a Least Mean 

Squared (LMS)-based adaptive filtering approach in real-time. 

However, this method requires measurement of velocity and 

displacement, which has often been considered impractical in 

many realistic cases due to excessive sensor requirements. 

Recently there have been significant advances in GPS 

displacement monitoring technology for large structures 

[93]-[97]. Displacements can be measured with 1-3 mm 
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accuracy for rates of up to 3-4 Hz, which include the modal 

frequencies of the rigid structure [94], and for 1 Hz, 

measurement errors have been stated as less than 12% [89]. The 

use of GPS opens up new opportunities in real-time structural 

health monitoring [93]. Equally, there are increasing advances 

in a wide range of displacement sensing technologies (e.g. 

[98]-[101]) that will enable further improvements in our ability 

to accurately identify and locate damage. 

However, monitoring structural damage is just at the 

beginning. Buildings increasingly have the ability to monitor 

all their functions, such as climate and energy usage. Integrated 

together these present other forms of monitoring to improve 

lifecycle and services in these buildings, as well as making 

them more economic and cost effective. Even that is not the end 

of the age of the (fixed) sensors. Networking lets us integrate 

buildings and regions into wider area of monitoring and leads 

eventually, with other systems, towards what some are now 

calling “smart cities” where data from buildings, power grids, 

traffic and much more are integrated into an entire 

interconnected, some might dare say optimized, organism. 

Thus, the next, “next age” is always around the corner. 

Increasingly the use of sensors to monitor, improve 

performance, and aid decision making, whether human or 

automated, is seen as an avenue to achieve  significant social 

and economic benefits. More succinctly, our ability to sense our 

environment has always let us assess and monitor what is 

around us, with silicon and other advanced sensors and 

computation this ability is being dramatically enhanced via 

mechatronics-based methods and technologies. 

III. HIGHLIGHTS IN THIS FOCUSED SECTION 

After a rigorous review process, we have accepted eight 

papers for publication while unfortunately, given the page limit, 

we had to make the difficult decision to turn down many other 

high-quality submissions. The focused section is organized to 

group the eight papers in three topic areas, i.e. sensor and 

inspection system, structure control, and construction 

machinery. 

A. Sensor and inspection system 

Under this topic, Laflamme et al. propose a soft elastomeric 

capacitor sensor for strain measurement over large surfaces. 

Converting strain into capacitance change, this sensor is 

characterized by low cost and large strain measurement range. 

It is demonstrated that deflection shapes of a simply supported 

beam can be reliably reconstructed using the sensor 

measurements. 

La et al. have developed a mobile bridge deck inspection 

platform equipped with localization and navigation, sensor 

network, wireless on-board control system, as well as the 

associated extended algorithm for Kalman filter estimation and 

multi-sensor data fusion. The wheeled robot contains GPS 

localization and navigation system with real-time kinematic 

correction, as well as provides remove access to surface images 

and various nondestructive evaluation data. The kinematic 

modeling of the inspection system and motion planning are 

discussed. 

Hanger cable is among the major structural components in 

suspension bridges. Cho et al. have studied the mechanism of a 

novel cable-climbing robot designed for cable inspection. 

Image data are wirelessly transmitted for inspecting broken 

wires in the cable.  Motion control of the cable-climbing robot 

is described. 

In another paper, Park et al. propose a multi-metric data 

fusion method to estimate displacement based on strain and 

acceleration data. This data fusion method doesn’t need prior 

calibration, and has been successfully used for estimating the 

mid-span displacement of a cable-stayed bridge. 

B. Structural control 

Under this topic, Lin et al. have studied the parameter 

identification of nonlinear characteristics that describes electric 

current controlled squeeze-mode MR damper and semi-active 

structural control with this MR damper. A bi-viscosity model is 

proposed to establish the nonlinear model of this MR damper.  

It is shown that the parameter identification result of the 

bi-viscosity model is more robust to frequency variation than 

Bouc-Wen model. Based on this MR damper, a semi-active 

fuzzy controller is designed. 

Ha et al. propose a current-driven cylindrical MR damper 

with accumulator, whose damping and stiffness characteristics 

can be adjusted. The authors have studied the modeling of 

nonlinear damping characteristics of this MR damper, as well 

as a second sliding mode control law that is free of chattering. 

Finally, Zhang et al. propose a novel feedback control 

method to improve the accuracy of substructure system 

identification. The identification error is formulated through 

cross power spectral densities (CPSD). To reduce substructure 

identification error, feedback control is proposed to increase the 

CPSD of the inter-story acceleration, and decrease CPSD ratio 

between two adjacent inter-story accelerations in a narrow 

frequency range centered at the story substructure frequency. 

Experimental validation has been carried out with a 

shear-frame model structure. 

C. Construction machinery 

Under this topic, Wang et al. study modeling and control 

method for electro-hydraulic proportion control of the erection 

system in Shield Tunneling Machine. An experimental system 

is developed for performance demonstration. The paper 

addresses issues such as position feedback control design, 

integral-separation PI control law with anti-windup, position 

system, speed system, and the selection method of controller 

parameters. 

IV. FUTURE TREND OF CIVIL MECHATRONICS 

Civil mechatronics is a rapidly developing research field. 

Advances in mechatronics technologies can assist in the 

implementation of innovative structural control and health 

monitoring systems, as well as facilitate the construction 

machinery and equipment to be reliable, safe, and highly 

efficient in construction automation. Although many advances 

in this cross discipline have been achieved, there are still many 

challenging theoretical and technological issues to be resolved. 

Some possible future trends are listed as follows: 
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1) To further incorporate sensors with wireless 

communication and embedded computing and form 

smart sensor and smart sensor network with more 

powerful function; 

2) To develop multi-sensing-function sensor chip with low 

power consumption, wireless communication, and 

advanced data processing algorithm; 

3) To investigate advanced data fusion, feature extraction, 

and condition assessment algorithms; 

4) To study the approximation realization method by 

semi-active control components such as damper and 

variable energy accumulator to realize active control; 

5) By incorporating bio-engineering and information 

technique, to develop of novel mobile inspection robot 

for space structures and large bridges, high speed 

railways, high buildings, etc.; 

6) To study image processing algorithm and realization 

approach to meet challenges in tough construction 

environment; 

7) To develop field robot-group control, multi-wheel 

driving construction machinery, and field controller for 

complicated task such as aqueduct, track-bridge, and 

metro construction and harsh construction environment; 

8) To investigate virtual-reality simulation and control of 

teleoperated construction machinery; 

9) To study the integration method of construction 

management and health monitoring system, mobile 

communication network, and intelligent construction 

machinery and equipment; 

10) To study advanced control theory, information 

techniques, advanced kinetics and mechanism theory, 

and advanced electro-hydraulic control system design 

theory for developing high performance construction 

machinery and group construction machinery. 
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