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Abstract For the control of large-scale complex systems, it has been widely recognized that 
decentralized approaches may offer a number of advantages compared with centralized 
approaches.  Primarily, these advantages include less feedback latency and lower demand on 
communication range, which may result in better control performance and lower system cost.  
This paper presents a decentralized approach for the control of large-scale civil structures.  The 
approach provides decentralized dynamic output feedback controllers that minimize the H∞ 

norm of the closed-loop system.  The effect of feedback time delay is considered in the problem 
formulation, and therefore, compensated during the controller design.  The control 
decentralization is achieved using a homotopy method that gradually transforms a typical 
centralized controller into multiple uncoupled decentralized controllers.  At each homotopy step, 
linear matrix inequality (LMI) constraints are satisfied to guarantee the performance requirement 
for the closed-loop H∞ norm.  The proposed algorithm is validated through numerical 

simulations with a five-story example structure.  Performance of the proposed algorithm is 
compared with a time-delayed decentralized control algorithm that is based upon the linear 
quadratic regulator (LQR) criteria.  
 
Keywords: structural control, feedback time delay, decentralized control, H-infinity control, 
homotopy method, linear matrix inequality. 
 
 
1. Introduction 
Over the last few decades, real-time feedback structural control has attracted a great amount of 
interest in the structural engineering community [1-4].  For example, it was reported that about 
50 buildings and towers had been instrumented with various types of structural control systems 
from 1989 to 2003 [5].  A feedback structural control system contains a network of sensors, 
controllers, and actuators.  Components in this network collaboratively mitigate structural 
vibration when strong external excitations (such as earthquakes or typhoons) occur.  When the 
excitation begins, dynamic responses of the structure are measured by sensors in real time.  
Sensor data are immediately communicated to a controller, which makes appropriate control 
decisions and dispatches the decisions to structural control devices.  The control devices then 
apply corresponding forces to the structure to counter-balance the effects due to external 
excitation, so that excessive structural vibration is mitigated.  Typical control devices for 
feedback structural control include semi-active hydraulic dampers (SHD), magnetorheological 
(MR) dampers, active mass dampers (AMD), etc.  Semi-active control devices are currently 
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preferred by many researchers and engineers, because of their power efficiency, inherent 
stability, and adaptability in real-time feedback control [6]. 
 
Traditional structural feedback control systems adopt centralized communication schemes.  In 
such a system, one central controller collects data from all the sensors in the structure.  The 
controller then makes control decisions, and delivers commands to all the structural control 
devices so that appropriate forces can be generated to mitigate structural vibration.  In a 
centralized control system, requirements on communication range and data transmission rate 
increase rapidly with the structural size and the number of sensors and actuators being deployed.  
These communication requirements could result in considerable economical and technical 
difficulties for implementation in large-scale civil structures, such as high-rise buildings with 
hundreds of stories.  Furthermore, the centralized controller represents a point of potential 
bottleneck failure for the whole system.   
 
In order to resolve these inherent problems of a centralized control system, decentralized control 
strategies can be explored [7-9].  For decentralized control, a large-scale control system is 
divided into a collective set of smaller and distributed sub-systems.  In each subsystem, 
decentralized controllers require only local and neighboring sensor data to make control 
decisions, and command only control devices in the vicinity.  As a result, higher control 
sampling rates and less feedback time delay can be offered by decentralized control; furthermore, 
shorter communication range and lower data transmission rate are required.  On the other hand, 
because each decentralized controller only has local and neighboring sensor data available for 
control decisions, decentralized control systems may only achieve sub-optimal control 
performance when compared to centralized systems.  Therefore, decentralized controllers need to 
be designed with special consideration.   
 
Decentralized structural controller design based on the linear quadratic regulator (LQR) 
optimization criteria has been studied [10].  The design provides static output feedback 
controllers which consider the effect of feedback time delay.  This paper explores a different 
control methodology, namely the H∞ control theory that can offer excellent control performance 

when “worst-case” external disturbances are encountered.  Centralized H∞ controller design in 

the continuous-time domain for civil structural control has been studied by researchers [11-17].  
Their work illustrates the feasibility and effectiveness of centralized H∞ control for civil 

structures.  For example, it has been shown that ∞H  control design may achieve excellent 

performance in attenuating transient vibrations of structures [18].  However, decentralized H∞ 

controller design that considers feedback time delay has rarely been explored by the community. 
 
The performance objective for H∞ controller design can be formulated using linear matrix 

inequalities (LMI) [19].  For an optimization problem with LMI constraints, sparsity patterns can 
be easily applied to the matrix variables.  This property offers great convenience for designing 
decentralized controllers where sparsity patterns in the parametric controller matrices can 
represent decentralized information feedback.  A preliminary study on decentralized 
H∞ controller design, which is based on static state feedback, has been performed [20].  In the 

preliminary work, controller gain matrices that are block-diagonal or close to block-diagonal can 
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represent various decentralized feedback patterns, where only neighboring sensor data is required 
for determining optimal control forces.  This study, however, cannot consider feedback time 
delay in the controller design.  Since feedback time delay inevitably exists in a practical 
structural control system, the inability to consider time delay during controller design may result 
in significant performance degradation, or even destabilize the structure in case of an active 
control system.  Because the previous H∞ controller design cannot be easily extended to provide 

controllers that utilize measurement output feedback (instead of state feedback), or controllers 
that can effectively consider feedback time delay, a new approach is developed in this work. 
 
This paper proposes a decentralized H∞ structural controller design that provides dynamic output 

feedback controllers.  The control problem is formulated in discrete-time domain so that 
feedback time delay can be effectively considered.  A homotopy method for designing 
decentralized H∞ controllers in continuous-time domain, which was described by Zhai, et al. 

[21], is adapted for this research.  The method gradually transforms a centralized controller into 
uncoupled decentralized ones that correspond to certain decentralized feedback patterns.  LMI 
constraints describing the closed-loop H∞ norm performance are guaranteed at each homotopy 

step.   
 
This paper first describes the formulation of multiple dynamical systems involved in the 
controller design.  The homotopy method that computes decentralized H∞ controllers is then 

described.  A five-story structure is adopted in the numerical validations that demonstrate the 
performance of the time-delayed decentralized H∞ controller design.  Performance of the 

proposed decentralized H∞ controller design is compared with a previously presented time-

delayed decentralized controller design, which is based on LQR optimization criteria [10].   
 
2. Problem Formulation 
For a lumped-mass structural model with n degrees-of-freedom (DOF) and instrumented with nu 
control devices, the equations of motion can be formulated as: 

( ) ( ) ( ) ( ) ( )
1 1t t t t t+ + = +w uMq Cq Kq T w T uɺɺ ɺ  (1) 

 
where q(t) 1n×∈ℝ  is the displacement vector relative to the ground; M, C, K n n×∈ℝ  are the mass, 
damping, and stiffness matrices, respectively; w1(t) 1 1wn ×∈ℝ  and u(t) 1un ×∈ℝ  are the external 
excitation vector and control force vector, respectively; Tw1

1wn n×∈ℝ  and Tu
un n×∈ℝ  are the 

external excitation and control force location matrices, respectively. 
 
For brevity, the discussion below is based on a 2-D shear-frame structure subject to 
unidirectional ground excitation.  The same formulation can be easily extended to 3-D structural 
models.  It is assumed that the external excitation w1(t) is a scalar (nw1 = 1), i.e. the ground 
acceleration history ( )gq tɺɺ .  Therefore, the spatial load pattern is: 

{ } 1nw1T M 1
×

= −  (2) 
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Entries in u(t) are defined as the control forces between neighboring floors.  The forces can be 
applied by control devices associated with stiff V-braces that connect two neighboring floors.  If 
a positive control force is defined to be moving the floor above the control device towards the 
left direction, and moving the floor below the control device towards the right direction, the 
control force location matrix Tu is determined as: 

1 1

1 1

1

uT

− 
 
 =
 −
 − 

⋱ ⋱
 (3) 

 
Based upon the equations of motion, the state-space system can be formulated as: 

( ) ( ) ( ) ( )1I I I I It t t t= + +x A x E w B uɺ  (4) 
 
where ( ) ( ) ( );I t t t=   x q qɺ 2 1n×∈ℝ  is the state vector;  AI

2 2n n×∈ℝ , EI
12 wn n×∈ℝ , and BI

2 un n×∈ℝ  are, 

respectively, the system, excitation influence, and control influence matrices given as follows: 

[ ] [ ]n n n n
I

× ×
− −

 
=  − − 

1 1

0 I
A

M K M C
, 

[ ]
1

1

wn n
I

×

−

 
=  
  

1
w

0
E

M T
, 

[ ]
un n

I
×

−

 
=  
  

1
u

0
B

M T
 (5) 

 
To facilitate the derivation for decentralized control, a linear transformation to the state vector is 
performed.  In the transformed state vector xII(t) 2 1n×∈ℝ , the displacement and velocity entries at 
the same story are concatenated together: 

xII(t) = [q1(t)   1qɺ (t)   q2(t)   2qɺ (t)  …  qn(t)   nqɺ (t)]T (6) 
 
To obtain the transformed state vector xII(t), a linear transformation matrix Γ  is defined to 
shuffle the entries in the original state vector Ix : 

( ) ( )II It tx Γx=  (7) 
 
Substituting ( ) ( )1

I IIt tx Γ x−=  into Eq. (4), and left-multiplying the equation with Γ , the state 

space representation using the transformed state vector becomes: 
( ) ( ) ( ) ( )1II II II II IIt t t t= + +x A x E w B uɺ  (8) 

 
where 1

II I
−=A ΓA Γ , II I=E ΓE , and II I=B ΓB .  The controlled output vector z(t) 1zn ×∈ℝ  is 

defined as: 
( ) ( ) ( ) ( )1IIt t t t= + +z z zz C x F w D u  (9) 

 
Similarly, the sensor measurement vector m(t) 1mn ×∈ℝ  can be defined in a general form as: 

( ) ( ) ( ) ( )1IIt t t t= + +m m mm C x F w D u  (10) 
 
Using zero-order hold, the continuous-time dynamics in Eq. (8) can be discretized using a 
sampling period ∆T [22].  The complete discrete-time structural system, which includes 
descriptions of the system dynamics, the output, and the measurement, can be summarized as: 
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1

1

1

1S S

S

S

k k k k

k k k k

k k k k

 + = + +
 = + +
 = + +

d d d

z z z

m m m

x A x E w B u

z C x F w D u

m C x F w D u

 (11) 

 
where k represents the discrete time step, and the subscript “d” denotes variables in the discrete-
time domain.  In Eq. (11), the matrices Ad, Ed, and Bd are given as: 

( )
( )

1 1

0

1 1

0

,  when  exists

,  when  exists

II

II II

II II

T

T T
II II II II

T T
II II II II

e

e d e

e d e

τ

τ

τ

τ

∆

∆ ∆− −

∆ ∆− −

=

= = −

= = −

∫

∫

A
d

A A
d

A A
d

A

E E A I E A

B B A I B A

 (12) 

 
Note that the entries in the state vector xS[k] 2 1n×∈ℝ  are grouped in the same sequence as in the 
vector xII(t) described by Eq. (6): 

xS[k] = [q1[k]   1qɺ [k]   q2[k]   2qɺ [k]  …  qn[k]   nqɺ [k]] T (13) 
 
In this work, it is assumed that one step of time delay exists for the sensor measurement signal 
m[k], i.e. the feedback time delay is equal to one sampling period ∆T.  This is typically 
encountered when the dominant part of feedback delay is the communication time delay.  The 
sensor noise vector is denoted as w2[k] 2 1wn ×∈ℝ .  To describe the one-step time delay and the 
addition of sensor noises, a simple discrete-time system can be defined as: 

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

2

2

1TD TD TD TD

TD TD TD

k
k k

k

k
k k

k

  
+ = +  

  


  = +  
 

m
x A x B

w

m
y C x D

w

 (14) 

 
where 

TD =A 0 , [ ]TD =B I 0 , TD =C I , and 
2TD ws =  D 0 I  (15) 

 
The input to this system is the original measurement signal m[k] and the sensor noise w2[k], the 
output of the system is the delayed noisy signal y[k], which is the feedback signal to be used for 
control decisions.  The formulation can be easily adapted and extended to model multiple steps 
of time delay, as well as different steps of time delay associated with different sensing channels. 
Parameter sw2 is the scaling factor representing sensor noise level.  Although the same scaling 
factor is assumed for all sensor noises in this formulation, a different factor can be assigned for 
each sensor noise entry, by replacing sw2I in the above equation with a diagonal matrix that 
contains different diagonal entries. 
 
While transmitting the delayed measurement signal y[k] to the controllers, this study is interested 
in decentralized feedback schemes.  Figure 1 illustrates two decentralized feedback patterns for a 
five-story structure.  It is assumed that at each floor i (i = 1, 2, …, 5), two measurement signals, 
y2i-1[k] and y2i[k], are acquired by sensors at that floor.  In Figure 1(a), the feedback pattern is 
defined such that when making the decision for control device ui, only measurement signals from 
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the i-th floor are needed.  Figure 1(b) illustrates a partially decentralized feedback pattern with 
information overlapping.  In this case, sensor measurements from neighboring floors (floor) are 
also available for making the control decision for control device ui. 
 
As illustrated in Figure 1(b), in decentralized feedback patterns with information overlapping, 
same sensor measurement signal may be utilized for the control decisions for multiple control 
devices.  To represent information overlapping, one delayed measurement signal is repeated as 
multiple entries in y[k].  Redundant rows are added into the definition of y[k] in Eq. (14); the 
entries in y[k] are then aggregated according to different information groups.  For example, for 
the feedback pattern illustrated in Figure 1(b), the delayed sensor measurement signal y[k] is 
replaced by the new vector yrepeat defined in Figure 2.  In this example, the length of the vector 
yrepeat is equal to twenty-six.  This process of signal repeating is to facilitate later design of 
decentralized controllers that are uncoupled from each other. 
 
The dynamical system that describes time delay and sensor noises (plus signal repeating in case 

u1[k]

u2[k]

u3[k]

y1[k], y2[k]

y3[k], y4[k]

y5[k], y6[k]

Story 1

Story 2

Story 3

u4[k]y7[k], y8[k]Story 4

u5[k]y9[k], y10[k]Story 5

 
(a) 

 
(b) 

Figure 1. Decentralized feedback patterns: (a) fully decentralized with no information 
overlapping; (b) partially decentralized with information overlapping. 

 

 

[ ]T

1 4 1 6 3 8 5 10 7 10repeat y y y y y y y y y yy = ⋯ ⋯ ⋯ ⋯ ⋯

 
Figure 2. Redundant entries are used to represent signal repeating for decentralized 
feedback with information overlapping (Figure 1b). 
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of information overlapping) is connected with the structural system in Eq. (11) to constitute the 
open-loop system depicted in Figure 3.  Output of the structural system, i.e. the sensor 
measurement vector m[k], is an input to the time-delay system.  For the overall open-loop 
system, the inputs include the excitation w1[k], the sensor noises w2[k], and the control forces 
u[k]; outputs of the open-loop system include the structural response output z[k] and the 
feedback signals y[k].  The number of state variables in the open-loop system is equal to the total 
number of state variables in the structural system and the time-delay system, i.e. nOL = 2n + nTD.  
Cascading the structural system and the time-delay system (e.g. using the sysic command in 
the Matlab Robust Control Toolbox [23]), the complete open-loop system is denoted as follows: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2

1 11 12

2 21 22

1k k k k

k k k k

k k k k

 + = + +
 = + +
 = + +

x Ax B w B u

z C x D w D u

y C x D w D u

 (16) 

 
where w[k] 1wn ×∈ℝ  contains both the external excitation w1[k] and the sensor noise w2[k]: 

[ ] [ ]
[ ]

1

2

k
k

k

  =  
  

w
w

w
 (17) 

 
The control objective is to design an effective feedback controller for the open-loop system with 
different feedback patterns.  The controller takes the feedback signal y[k] as input, and outputs 
the control force vector u[k].  Controller dynamics are described by the following state-space 
equations: 

[ ] [ ] [ ]
[ ] [ ] [ ]
1G G G G

G G G

k k k

k k k

 + = +
 = +

x A x B y

u C x D y
 (18) 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1

1

1

1S S

S

S

k k k k

k k k k

k k k k

 + = + +
 = + +
 = + +

d d d

z z z

m m m

x A x E w B u

z C x F w D u

m C x F w D u

[ ] [ ] [ ]
[ ] [ ] [ ]
1G G G G

G G G

k k k

k k k

 + = +
 = +

x A x B y

u C x D y

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

2

2

1TD TD TD TD

TD TD TD

k
k k

k

k
k k

k

  
+ = +  

  


  = +  
 

m
x A x B

w

m
y C x D

w

 
Figure 3. Diagram of the structural control system. 
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In this study, it is assumed that both the controller and the open-loop system have the same 
number of states, i.e. G Gn n

G
×∈A ℝ  and nG = nOL.  For convenience, a matrix variable 

G ( ) ( )G u G yn n n n+ × +∈ℝ  is defined to contain all controller parametric matrices: 

G G

G G

 
=  
 

A B
G

C D
 (19) 

 
3. Decentralized Discrete-time H∞ Controller Design 
For a decentralized controller design, the decentralized feedback can be represented by sparsity 
patterns in the controller matrices AG, BG, CG and DG.  For this purpose, entries in the feedback 
signal y[k] and the control force u[k] are divided into N groups.  While making control decisions 
for one group of control force entries, only one group of corresponding feedback signals is 
needed.  Block-diagonal patterns are assigned to controller matrices in order to represent a 
decentralized control architecture that includes decentralized controllers GI, GII, …, and GN: 

( )
( )
( )
( )

, , ,

, , ,

, , ,

, , ,

I II N

I II N

I II N

I II N

G G G G

G G G G

G G G G

G G G G

diag

diag

diag

diag

=

=

=

=

A A A A

B B B B

C C C C

D D D D

⋯

⋯

⋯

⋯

 (20) 

 
Using the sparsity patterns shown in (20), the controller in Eq. (18) is equivalent to multiple 
uncoupled decentralized controllers, each controller requiring only one group of feedback signals 
to determine the control forces for that group: 

[ ] [ ] [ ]
[ ] [ ] [ ]
1

I I I I

I I I

G G G G I

I G G G I

k k k

k k k

 + = +
 = +

x A x B y

u C x D y
, 

 
…, 

 
[ ] [ ] [ ]

[ ] [ ] [ ]
1

N N N N

N N N

G G G G N

N G G G N

k k k

k k k

 + = +
 = +

x A x B y

u C x D y
 

 

(21) 

 
As an example, for the fully decentralized feedback pattern shown in Figure 1(a), the total 
number of groups, N, is equal to five.  Each feedback signal group contains two entries and each 
control force group has one entry.  For the feedback pattern with information overlapping shown 
in Figure 1(b), the total number of groups is still equal to five and each control force group 
contains one entry; the feedback signals are aggregated as illustrated in Figure 2, which shows 
that feedback signal group [ ]I ky  has four entries, [ ]II ky , [ ]III ky , and [ ]IV ky  have six entries, 

and [ ]V ky  has four entries. 

 
Assuming that the D22 matrix in the open-loop system in Eq. (16) is a zero matrix, following 
notations are defined [21]: 
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1 2

1 2

1 11 12 1 11 12

2 21

2 21

G G

G

n n

n

 
       =       
 
 

A 0 B 0 B

0 0 0 I 0A B B

C D D C 0 D 0 D

C D 0 I 0

C 0 D

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

 (22) 

 
Zero submatrices with unspecified dimensions should have compatible dimensions with 
neighboring submatrices.  Using the definitions above, the closed-loop system in Figure 3 can be 
formulated by concatenating the open-loop system with the controller system: 

[ ] [ ] [ ]
[ ] [ ] [ ]
1CL CL CL CL

CL CL CL

k k k

k k k

 + = +
 = +

x A x B w

z C x D w
 (23) 

 
where 

2 2 1 2 21 1 12 2 11 12 21, , ,CL CL CL CL= + = + = + = +A A B GC B B B GD C C D GC D D D GDɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (24) 
 
and G is as defined in Eq. (19).  Note that the input to the closed-loop system is w[k], which 
contains the external excitation w1[k] and sensor noises w2[k], while the output is same as the 
structural output z[k] defined in Eq. (16).  Using Z-transform [22], the dynamics of a discrete-
time system can be represented by the transfer function Hzw(z) z wn n×∈ℂ  from disturbance w to 
output z as: 

( ) ( ) 1

CL CL CL CLz z
−= − +zwH C I A B D  (25) 

 
The objective of ∞H  control is to minimize the ∞H -norm of the closed-loop discrete-time 
system, which in the frequency domain is defined as: 

[ ]
( )j

,
sup

N N

Te ω

ω ω ω
σ ∆

∞
∈ −

 =  zw zwH H  (26) 

 
where ω represents angular frequency, ωΝ = Tπ ∆  is the Nyquist frequency, j is the imaginary 

unit, [ ]σ i  denotes the largest singular value of a matrix, and “sup” denotes the supremum (least 

upper bound) of a set of real numbers.  The definition shows that in the frequency domain, the 

∞H -norm of the system is equal to the peak of the largest singular value of the transfer function 

( )j Te ω∆
zwH  in the Nyquist frequency range, i.e. the ∞H -norm represents the largest amplification 

gain from the disturbance w to the output z.  Assume that the largest singular value reaches its 
peak when frequency ω is equal to ωp, then the so called “worst-case” disturbance is a 
disturbance vector w( j Te ω∆ ) at frequency ωp and with the same direction as the right singular 

vector of the transfer function ( )pj Te ω ∆
zwH  [24].  

 
According to the Bounded Real Lemma, the following two statements are equivalent in 
specifying  the performance criterion based on the ∞H -norm of a discrete-time system [25]: 
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1. The ∞H -norm of the system in Eq. (23) is less than γ, and ACL is stable in the discrete-
time sense (i.e. all of the eigenvalues of ACL fall in the unit circle on the complex plane);  

2. There exists a symmetric positive definite matrix 0>P  such that the following matrix 
inequality holds: 

1

*
0

* *

* * *

CL CL

T
CL

T
CLγ
γ

− −
 −  <
 −
 

−  

P A B 0

P 0 C

I D

I

 (27) 

 
where * denotes a symmetric entry, and “< 0” means that the matrix at the left side of the 
inequality is negative definite.  Pre-multiplying and post-multiplying (27) by a positive definite 
matrix diag( , , ,P I I I ), the congruence transformation leads to the following matrix inequality: 

*
0

* *

* * *

CL CL

T
CL

T
CLγ
γ

− 
 −  <
 −
 − 

P PA PB 0

P 0 C

I D

I

 (28) 

 
Substituting the definitions in (24) into (28), we define a matrix variable F that is a function of G 
and P: 

( )

( ) ( )
( )

( )

2 2 1 2 21

1 12 2

11 12 21

*
,

* *

* * *

T

T
γ

γ

 − + +
 
 − + =
 

− + 
 

− 

P P A B GC P B B GD 0

P 0 C D GC
F G P

I D D GD

I

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶɶ

ɶ ɶ ɶ

 (29) 

 
As a summary, the closed-loop ∞H -norm is less than γ if F(G, P) < 0.  For a positive real number 

γ, the condition F(G, P) < 0 is to be satisfied by searching for a decentralized controller G (with 
parametric structures illustrated in Eq. (20)) and a symmetric positive definite matrix P.  Because 
both G and P are unknown variables, the problem has a bilinear matrix inequality (BMI) 
constraint [26].  When there is no sparsity requirements on matrix G, efficient algorithms and 
solvers are available for computing an ordinary controller matrix GC [23; 25] that minimizes the 
closed-loop ∞H -norm: 

C C

C C

G G

C
G G

 
=  
  

A B
G

C D
 (30) 

 
In general, 

CGA , 
CGB , 

CGC , and 
CGD  are full matrices that represent centralized information 

feedback.  When sparsity patterns (such as block-diagonal forms) in the controller parametric 
matrices are specified to achieve decentralized information feedback, off-the-shelf algorithms or 
numerical packages for solving the optimization problem with BMI constraints are not available 
[26; 27].  In this study, a heuristic homotopy method for designing continuous-time decentralized 
controllers, which was described by Zhai, et al. [21], is adapted for the discrete-time controller 
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design.  Starting with a centralized controller, the homotopy method gradually transforms the 
controller into a decentralized one.  The algorithm searches for a decentralized controller along 
the following homotopy path: 

( )1 ,0 1C Dλ λ λ= − + ≤ ≤G G G  (31) 
 
where λ gradually increases from 0 to 1.  GC  represents the initial centralized controller to start 
with and GD the desired decentralized controller with the sparsity pattern shown in Eq. (20).  
Assume that a total number of M steps are assigned for the homotopy path, and denote: 

, 0,1,...,k
k k MMλ = =  (32) 

 
At every step k along the homotopy path, the two matrix variables GD and P are held constant 
one at a time, so that only one variable needs to be solved every time.  In this way, the BMI 
constraint in Eq. (29) degenerates into a linear matrix inequality (LMI) constraint.  For 
convenience, a matrix variable V is defined based on Eq. (29) as a function of variables GD, P, 
and λ (note that the centralized controller GC is initially solved using conventional methods and 
remains constant during the homotopy search): 

( ) ( ) ( )( ), , , 1 , 0D C Dλ λ λ= = − + <V G P F G P F G G P  (33) 

 
At the beginning of every homotopy search, an upper bound for the closed-loop ∞H -norm, i.e. γ, 
is specified.  The unknown variables in the above matrix inequality consist of GD and P only.  
When GD is held constant, a new P matrix can be computed for the next step; on the other hand, 
when P is held constant, a new GD matrix is computed.  If a homotopy search fails, γ is increased 
by certain relaxation factor and a new search is conducted.  The modified algorithm is described 
as follows: 

[i]  Compute a centralized controller GC and the minimum closed-loop ∞H -norm γC using 

existing robust control solvers [23; 25]; set γ ←γC , and set an upper limit (γmax) for γ, e.g. 
106γC. 

[ii]  Initialize M, the total number of homotopy steps, to be a positive number, e.g. 28, and set 
an upper limit (Mmax) for M, e.g. 213; Set k ← 0, λ0 ← 0, and GD0 ← 0; compute a 
feasible solution P0 under the constraint ( )0 0 0, , 0D λ <V G P . 

[iii]  Set k ← k+1, and λk ← k/M; compute a solution GD under the constraint 
( )1, , 0D k kλ− <V G P . If it is not feasible, go to Step [iv].  If ( )1, , 0D k kλ− <V G P  is feasible, 

set GDk ← GD, and compute a solution P under the constraint ( ), , 0
kD kλ <V G P .  If 

( ), , 0
kD kλ <V G P  is feasible, set Pk ← P, and go to Step [v]; if not, go to Step  [vi]. 

[iv]  Compute a solution P for ( )
1
, , 0

kD kλ
−

<V G P . If ( )
1
, , 0

kD kλ
−

<V G P  is not feasible, go to 

Step [vi].  If it is feasible, set Pk ← P and compute a solution GD under the constraint 
( ), , 0D k kλ <V G P .  If ( ), , 0D k kλ <V G P  is feasible, set GDk ← GD  and go to Step [v]; if 

not, go to Step [vi]. 
[v]  If k < M, go to Step [iii]. If k is equal to M, GDk is the solution of the decentralized control 

problem, and the search ends here. 
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[vi]  Set M ← 2M under the constraint M ≤ Mmax and restart the searching from Step [ii].  If M 
reaches beyond Mmax, set γ ← sγγ (sγ is a relaxation factor that is greater than one) under 
the constraint γ ≤ γmax and restart from Step [ii].  If γ exceeds γmax, it is concluded that the 
computation doesn’t converge. 

 
A decentralized controller is found when k is equal to M at step [v].  The controller has the 
property that the closed-loop ∞H -norm is less than γ.  It should be pointed out that since the 
homotopy method is heuristic in nature, non-convergence in the computation does not imply that 
the decentralized ∞H  control problem has no solution. 
 
4. Numerical Example 
This section first illustrates procedures of the decentralized ∞H  controller design using a five-
story example structure.  Simulations are conducted to illustrate the effects of different feedback 
time delays for different decentralized feedback patterns.  Performance of the decentralized ∞H   
controllers is then compared with the performance of time-delayed decentralized controllers that 
are based on linear quadratic regulator (LQR) optimization criteria. 
 

4.1. Formulation of the five-story example structure 
A five-story model similar to the Kajima-Shizuoka Building is employed [28].  The building has 
a total height of about 19m (Figure 4a).  As shown in Eq. (1), the five-story building is modeled 
as an in-plane lumped-mass structure with control devices allocated between every two 
neighboring floors.  Figure 4b shows the model parameters of the lumped-mass structure.  A 
discrete-time system describing the structural dynamics is formulated as shown in Eq. (11).  
Considering that excessive inter-story drifts are among the most damaging factors to building 
structures, the output matrices are defined as follows: 

1

2

5 10 10 10

1
1 0 1

1 0 11000 1 0 1
1 0 1 0

× ×

 
− 

   −= = ×   −   −
  

z
z

z

C
C C

0

, =zF 0 , 1

2

3.55 5

5 5
10−×

×

   = = ×     

z
z

z

D 0D D I  (34) 

 
The assignments for Cz, Fz, and Dz result in an output vector z[k] 10 1×∈ℝ  that can be partitioned 
into two sub-vectors:  

[ ] [ ]
[ ]

[ ]
[ ]

1

2

1

2

S kk
k

k k

     = =   
      

z

z

C xz
z

z D u
 (35) 

 
Sub-vector [ ]1 kz  contains entries related to structural response, and sub-vector [ ]2 kz  contains 

entries related to control forces.  The 2-norm of the output vector z[k] is a quadratic function of 
the inter-story drifts and the control forces: 

[ ] [ ] [ ]
[ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ]( )

2 2

2 2

2 2 2 26 2
1 2 1 3 2 4 3 5 4

7 2 2 2 2 2
1 2 3 4 5

10

10

Sk k k

q k q k q k q k q k q k q k q k q k

u k u k u k u k u k

z zz C x D u

−

= +

 = + − + − + − + −  

+ + + + +

 (36) 
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where qi[k] represents floor displacement relative to the ground (which means that [ ] [ ]1i iq k q k−−  

for i = 2 … 5 represents inter-story drift), and ui[k] represents control force.  The ∞H  controller 
design aims to minimize the closed-loop ∞H -norm, which is defined as the system norm from 
the excitation input to the output z[k].  The relative weighting between the structural response 
and the control effort is reflected by the magnitude of the output matrices, Cz and Dz.  If higher 
attenuation of structural response is needed, larger magnitude should be assigned to Cz; on the 
contrary, if less control effort is available, larger magnitude should be assigned to Dz.   
 
It is assumed that inter-story drifts and velocities can be measured.  Such an assumption is 
reasonable considering that modern control devices contain internal stroke sensors and load cells 
that measure real-time device displacements and forces, respectively [29].  Assuming a V-brace 
element is associated with the control device, the displacement and force measurements can be 
used to estimate inter-story drift and velocity.  Accordingly, the measurement vector m[k] is 
defined as: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] T

1 1 2 1 2 1 5 4 5 4k q k q k q k q k q k q k q k q k q k q km  = − − − − ɺ ɺ ɺ ɺ ɺ⋯  (37) 

 
In order to obtain the above definition of m[k], the measurement matrices in Eq. (11)  are 
determined as: 

Floor-1

Floor-5

 

Inter-story Stiffness

Story-5         84 x 10
3
kN/m

Story-4         89 x 10
3
kN/m

Story-3         99 x 10
3
kN/m

Story-2       113 x 10
3
kN/m

Story-1       147 x 10
3
kN/m

Seismic Mass

F5    226.1 x 10
3
kg

F4    204.8 x 10
3
kg

F3    207.0 x 10
3
kg

F2    209.2 x 10
3
kg

F1    215.2 x 103 kg

 
(a) (b) 

� � � � �  
(c) 
 

Figure 4. A five-story model similar to the Kajima-Shizuoka Building: (a) side elevation 
of the building; (b) model parameters of the lumped-mass structure; (c) communication 
subnet partitioning for different degrees of centralization (DC). 
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10 10

1
0 1
1 0 1

1 0 1

1 0 1 ×

 
 
 −=  −
 
 − 

mC

⋱ ⋱ ⋱

, =mF 0 , =mD 0  (38) 

 
Sensor noise level sw2 is set as 0.01 while constructing the time-delay system described in Eq. 
(14) and (15). 
 

4.2. Controller designs with different feedback patterns 
As illustrated in Figure 4c, the simulations are conducted for feedback patterns with different 
degrees of centralization (DC), which represents the number of neighboring floors that constitute 
a communication subnet and share their sensor data.  The degree-of-centralization (DC) reflects 
the different communication architectures, with each communication subnet (as denoted by 
channels Ch1, Ch2, etc.) covering a limited number of stories.  The controllers covered by a 
subnet are allowed to access the sensor data within that subnet.  For example, case DC�  implies 
each subnet consists of only one floor; since the inter-story drift and velocity on each floor are 
available for feedback, this communication pattern is the same as depicted in Figure 1(a).  For 
case DC� , each subnet consists of two floors, resulting in four subnets for the five-story 
building; this communication pattern is the same as depicted in Figure 1(b), and the 
corresponding sensor measurement vector is as defined in Figure 2.  For DC� , all five floors 
share their sensor data, resulting in a centralized information architecture.  For stories covered by 
multiple overlapping subnets (such as in cases DC� , � , and � ), each controller at these 
stories should have communication access to data within all the overlapping subnets.  Although 
each controller may command multiple control devices, in this example, a control device can 
only be commanded by one controller.   
 
A sampling period of 5 ms is first used for all (de)centralized feedback patterns; this implies that 
the feedback time delay is also set as 5 ms.  The homotopy method is used to compute five 
decentralized controllers for case DC� :  IG� , IIG� , ..., VG� , i.e. N = 5 in Eq. (20).  Each 
decentralized controller takes two feedback signals as input (i.e. inter-story drift and velocity at 
the story housing the decentralized controller), and outputs the desired control force at this story.  
For example, the decentralized controller IG� , which has two input variables, four state variables, 
and one output variable, is determined by the homotopy search: 

 4.438E-04    -2.117E-03     1.313E-03     4.975E-03

-1.666E-03     2.042E-02    -6.201E-03    -2.784E-02

 9.288E-04    -4.616E-03     2.806E-03     1.003E-02

 5.259E-03    -

I I

I I

I

G G

G G

A B
G

C D

 
 =
 
 

=

� �

� �

�

-1.395E-02    1.387E-03

 4.170E-02    5.704E-04

-2.297E-02    1.874E-03

3.244E-02     1.521E-02     6.962E-02 -1.553E-01    1.082E-02

 1.860E+06   -5.650E+06    6.525E+06    1.373E+07 -8.270E+07    1.142E+07

 
 
 
 
 
 
 
 

 
(39) 
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Note that the maximum magnitude of the eigenvalues of matrix 
IG

A �  is less than one, i.e. 

( )( )max 1
I

eig <
G

A � .  This ensures the numerical stability of the controller dynamics described in 

Eq. (21). 
 
For the partially decentralized case DC� , five uncoupled decentralized controllers are computed 
as well.  The dimensions of the five controllers are summarized in Table 1.  The numbers of 
input/output variables correspond to the illustration in Figure 2.  
 
 

Table 1  Dimensions of the decentralized dynamic controllers for feedback pattern DC�  
 IG�  IIG�  IIIG�  IVG�  VG�  

Input 4 6 6 6 4 
State 4 4 4 4 4 

Output 1 1 1 1 1 
 
 
Similarly, controllers for cases DC�  and DC�  have different dimensions.  For the centralized 
case DC� , the centralized controller has ten input variables (i.e. inter-story drifts and velocities 
at all five stories), twenty state variables, and five output variables (i.e. five control forces). 
 
Table 2 lists the open-loop ∞H -norm of the uncontrolled structure, as well as the closed-loop 

∞H -norms 
∞zwH  of the controlled structure.  The ∞H -norm of the uncontrolled structure is 

computed using the discrete-time structural system defined in Eq. (11), while neglecting the 
control force vector u and the measurement vector m.  Even with 5ms of time delay in the 
feedback loop, all controllers illustrate stable performance and achieve smaller ∞H -norm than 
the uncontrolled case, which indicates reduced “worst-case” amplification from the disturbance 
w to the output z.  Also listed in Table 2 are the ∞H -norms 

1 ∞z wH  from the disturbance w to the 

z1, i.e. the sub-vector z1 that accounts for structural response only as defined in Eq. (35).  In this 
way, the reduction to the amplification from disturbance to structural response can be illustrated 
more clearly.  Among the controlled cases, for either 

∞zwH  or 
1 ∞z wH , the centralized controller 

(case DC� ) assumes that complete state information is available for control decisions for all 
five control devices; accordingly, the centralized controller achieves minimum closed-loop ∞H -
norm (which means “best” control performance).  In general, the higher the degree of 
centralization is, the smaller the ∞H -norm becomes. 
 

Table 2   ∞H -norms of controlled (with 5ms feedback time delay) and uncontrolled structures 
 Uncontrolled DC�  DC�  DC�  DC�  DC�  

∞zwH  144.88 113.50 55.53 60.87 51.41 47.11 

1 ∞z wH  144.88 47.27 25.96 27.27 18.59 17.87 
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4.3. Simulation results for ∞H  control cases 
The 1995 Kobe NS (JMA Station) earthquake record with its peak acceleration scaled to 1m/s2 is 
used as the ground excitation.  Ideal actuators that generate any desired control forces are 
deployed at the five stories.  In contrast to a realistic semi-active or active control device, an 
ideal actuator offers unlimited force capacity.  To be consistent with the value of sw2, sensor 
noises are injected as zero-mean normal distributions with a standard deviation that is 1% of the 
sensor signal amplitude. 
 
Figure 5 illustrates the peak values of the inter-story drifts, absolute accelerations, and actuator 
forces for each story (floor).  Compared with the uncontrolled case, all five controlled cases 
achieve significant reduction to structural response, and demonstrate stability with 5ms time 
delay in the feedback loop.  The fully decentralized case without any information overlapping, 
case DC� , achieves similar reduction to inter-story drifts compared with the centralized case 
DC� , except for some difference at the 2nd story.  Meanwhile, case DC�  achieves much more 
reduction to peak floor accelerations and requires less actuator forces at the 3rd, 4th, and 5th 
stories.  Other decentralized cases with information overlapping, including DC� , DC� , and 
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Figure 5. Simulation results for ∞H  control with 5ms time delay: (a) peak inter-story drifts; (b) 
peak absolute accelerations; (c) peak control forces 
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Figure 6. Simulation results for ∞H  control with 5ms time delay: (a) RMS inter-story drifts; (b) 
RMS absolute accelerations; (c) RMS control forces (note that the horizontal scales are different 

from these in Figure 5). 
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DC� , achieve more reduction to the peak drifts, while at the expense of larger peak control 
forces. 
 
Figure 6 presents the root-of-mean-square (RMS) values of the inter-story drifts, absolute 
accelerations, and actuator forces for each story (floor).  It is again illustrated that compared with 
the uncontrolled structure, significant reduction to inter-story drifts and floor accelerations has 
been achieved by all the control cases.  Although case DC�  achieves least reduction to RMS 
inter-story drifts, it achieves the most reduction to RMS floor accelerations.  Similar to the peak 
value plots in Figure 5, Figure 6 shows that in general, cases DC� , DC� , and DC� , achieve 
more reduction to RMS inter-story drifts at the expense of larger control effort. 
 
To illustrate the effect of different time delays due to different degrees of (de)centralization, 
additional simulations are conducted with different time delays adopted for five different 
feedback patterns (Table 3).  For case DC� , where each actuator only requires sensor data at its 
own story to make control decisions, time delay is chosen to be the minimum as 5ms.  For case 
DC� , where data from sensors on the actuator’s own story and neighboring story (stories) are 
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Figure 7. Simulation results for ∞H  control with different time delays: (a) peak inter-story drifts; 
(b) peak absolute accelerations; (c) peak control forces  

 
 

0 0.5 1 1.5 2 2.5

x 10
-3

1

2

3

4

5

Drift (m)

S
to

ry

RMS Inter-story Drifts

DC1(5ms)
DC2(10ms)

DC3(15ms)
DC4(20ms)

DC5(25ms)
No control

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

Acceleration (m/s2)

F
lo

or

RMS Absolute Accelerations

DC1(5ms)

DC2(10ms)

DC3(15ms)
DC4(20ms)

DC5(25ms)

No control

0 2 4 6 8 10 12 14 16

x 10
4

1

2

3

4

5

Force (N)

S
to

ry

RMS Actuator Force

DC1(5ms)

DC2(10ms)

DC3(15ms)
DC4(20ms)

DC5(25ms)

(a) (b) (c) 
 
Figure 8. Simulation results for ∞H  control with different time delays: (a) RMS inter-story drifts; 

(b) RMS absolute accelerations; (c) RMS control forces (note that the horizontal scales are 
different from these in Figure 7). 
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required, time delay is adopted as 10ms.  Similarly, for the cases DC� , DC� , and DC� , 
where more sensor data are required and processed, time delay is adopted as 15ms, 20ms, and 
25ms, respectively.  Using the newly computed controllers based on different time delays, 
simulated peak inter-story drifts and actuator forces are presented in Figure 7.  Comparison 
between Figure 5 and Figure 7 shows that due to longer time delay, the performance of most 
control cases degrades while requiring larger actuator force capacities.  In terms of reducing peak 
drifts and accelerations, all decentralized cases (DC�  ~ DC� ) offer comparable performance 
as the centralized case DC� .  Although other decentralized cases have higher requirement on 
actuator capacity, DC�  has lower requirement on overall actuator capacity than DC� .  In 
addition, since decentralized case DC�  has much lower requirement on the communication 
network, it can be more preferable for implementation.  Similar trend can be observed in Figure 
8 that illustrates the root-of-mean-square (RMS) values of the inter-story drifts, absolute 
accelerations, and actuator forces for each story (floor).   
 

Table 3  Feedback time delays for five different feedback controllers 
 DC�  DC�  DC�  DC�  DC�  

Time delay (ms) 5 10 15 20 25 
 

 
4.4. Comparison with decentralized controllers based on the LQR optimization criteria 

It could be instructive to compare the decentralized ∞H  controller design with the decentralized 
LQR controller design that was previously studied [10].  The LQR control algorithm aims to 
select the optimal control force trajectory u by minimizing the expected value of a quadratic cost 
function, J : 

[ ] [ ] [ ] [ ]( )T T
2 2,  0 and  0

u un n n n
k l

J k k k l k l
∞

× ×
=

= + − − ≥ >∑ x Qx u Ru Q R  (40) 

 
where l denotes the number of feedback delay steps, which is set to one in this work.  Using the 
same definition of the output matrices zC  and zD  as described in Eq. (34), the following 
weighting matrices are employed for the LQR controller design: 

T= z zQ C C ,  T= z zR D D  (41) 
 
As a result, the LQR optimization index J is approximately proportional to the signal 2-norm of 
the system output: 
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 (42) 

 
where T∆  is the sampling period, and note that T =z zC D 0  and T =z zD C 0  using the definitions in 
Eq. (34).  With feedback time delay considered in the above formulation, the design of the LQR 
controller iteratively searches for an optimal control gain matrix by traversing along the 
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optimization gradient.  Sparsity shape constraints are iteratively applied to the search gradient in 
order to compute the decentralized gain matrices.  Since the LQR control approach is equivalent 
to an 2H  control design that minimizes the closed-loop 2H -norm from the ground excitation w1 
to the system output z, LQR controllers are expected to perform well in reducing the closed-loop 

2H -norm 
1 2zwH  [24; 30].  Similar to the ∞H  norm, the 2H -norm of a discrete-time system can 

also be written in terms of the singular values of the transfer function matrix: 
 

( )
1 1

2 j

2 2
N

N

T
i

i

T
e d

ω ω
ω

σ ω
π

+ ∆

−

∆  =  ∑∫zw zwH H  (43) 

 
In this example, the second dimension of the transfer function matrix ( )

1

j Te ω∆
zwH  is one, because 

the disturbance w1 is a scalar that represents the ground excitation.  Therefore, ( )
1

j Te ω∆
zwH  has 

only one singular value at each frequency ω, which is the largest singular value.   
 
Figure 9 compares the singular values of the closed-loop transfer function ( )

1

j Te ω∆
zwH  for cases 

using (de)centralized ∞H  controllers and using (de)centralized LQR controllers, with 5ms 

feedback time delay considered.  The peak singular value of each ∞H  control case is less than 

the peak singular values of the corresponding LQR control case with the same DC.  The closest 
pair is for case DC1, where the peak singular value is equal to 81.8 using the decentralized ∞H  
controller, and equal to 84.6 using the decentralized LQR controller.  This shows that 
decentralized ∞H  controllers perform better at “pushing down the peak of the largest singular 
value over the frequency span,” which agrees with the objective of minimizing the closed-loop 

∞H -norms (as defined in Eq. (26)).  On the other hand, the area covered under the singular value 
curve of each LQR control case is less than the area covered under the singular value curve of 
the corresponding ∞H  control case with the same DC.  This shows that the decentralized LQR 
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controllers perform better at “reducing all singular values over the frequency span,” which agrees 
with the objective of minimizing the 2H  norm (as defined in Eq. (43)).   
 
To illustrate the effect of different time delays due to different degrees of (de)centralization, 
simulations are conducted with different time delays adopted for the LQR controllers with the 
five different feedback patterns shown in Table 3.  The same 1995 Kobe NS (JMA Station) 
earthquake record is scaled to a peak acceleration of 1m/s2; ideal actuators are again deployed at 
all five stories.  Simulated peak inter-story drifts, absolute accelerations, and actuator forces are 
presented in Figure 10, and RMS values are presented in Figure 11.  These two figures are 
comparable to Figure 7 and Figure 8, where ∞H  controllers with different time delays are 
adopted.  The comparison shows that in this example, the LQR controllers entail less control 
effort, while achieving less reduction to peak drifts and absolute accelerations.  
 
5. Summary and Discussion  
This paper proposes a decentralized controller design that aims to minimize the closed-loop ∞H   
norm of a controlled civil structure.  The design is formulated in discrete-time domain, and 

0 0.005 0.01 0.015
1

2

3

4

5

Drift (m)

S
to

ry

Maximum Inter-story Drifts

DC1(5ms)

DC2(10ms)

DC3(15ms)
DC4(20ms)

DC5(25ms)

No control

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

Acceleration (m/s2)

F
lo

or

Maximum Absolute Accelerations

DC1(5ms)
DC2(10ms)

DC3(15ms)
DC4(20ms)

DC5(25ms)
No control

0 2 4 6 8 10 12

x 10
5

1

2

3

4

5

Force (N)

S
to

ry

Maximum Actuator Force

DC1(5ms)

DC2(10ms)

DC3(15ms)
DC4(20ms)
DC5(25ms)

(a) (b) (c) 
 

Figure 10. Simulation results for LQR control with different time delays: (a) peak inter-story 
drifts; (b) peak absolute accelerations; (c) peak control forces  
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Figure 11. Simulation results for LQR control with different time delays: (a) RMS inter-story 
drifts; (b) RMS absolute accelerations; (c) RMS control forces (note that the horizontal scales are 

different from these in Figure 10). 
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considers possible feedback time delay.  The decentralized controller design employs a 
homotopy method, which gradually transforms an original centralized controller into uncoupled 
decentralized ones.  LMI constraints describing the closed-loop H∞ norm performance are 

ensured at each homotopy step.  Such solutions are necessary to provide control systems with the 
ability to scale with the number of sensors and actuators implemented in the system.  
Nevertheless, it should be noted that the homotopy approach for decentralized ∞H  controller 

design is heuristic.  The approach may not guarantee the minimum ∞H -norm over the complete 
solution space. 
 
Performance of the time-delayed decentralized H∞ controller design is validated through a 

number of numerical simulations using a five-story structure.  It is shown that with less feedback 
latency, decentralized control strategies may achieve similar performance when compared with 
centralized ones.  Therefore, decentralized strategies can be more appealing due to the lower cost 
of implementing a decentralized communication network.  Comparison between the 
decentralized ∞H  controllers and the decentralized LQR-based controllers illustrates that both 

controllers deliver expected performance in terms of reducing closed-loop system norms.  The 
trade-off between structural response attenuation and control effort is demonstrated for both the 

∞H  controllers and LQR controllers.  Since the proposed control design is based on the 

assumption of system linearity, further study is needed on how to improve the control 
performance with non-linear control devices.  Future investigation may also develop a systematic 
method for the design of decentralized architectures, e.g., the delineation of overlapping subnets, 
as well as the selection of appropriate degrees of centralization. 
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